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Abstract—Neural Architecture Search (NAS) aims to automati-
cally find effective architectures within a predefined search space.
However, the search space is often extremely large. As a result,
directly searching in such a large search space is non-trivial
and also very time-consuming. To address the above issues, in
each search step, we seek to limit the search space to a small
but effective subspace to boost both the search performance
and search efficiency. To this end, we propose a novel Neural
Architecture Search method via Dominative Subspace Mining
(DSM-NAS) that finds promising architectures in automatically
mined subspaces. Specifically, we first perform a global search,
i.e., dominative subspace mining, to find a good subspace from
a set of candidates. Then, we perform a local search within
the mined subspace to find effective architectures. More crit-
ically, we further boost search performance by taking well-
designed/searched architectures to initialize candidate subspaces.
Experimental results demonstrate that DSM-NAS not only re-
duces the search cost but also discovers better architectures than
state-of-the-art methods in various benchmark search spaces.

Index Terms—Neural Architecture Search, Search Space Min-
ing, Global Search and Local Search, Search Efficiency, Convo-
lutional Neural Networks

I. INTRODUCTION

DEEP neural networks (DNNs) have been the workhorse
of many challenging tasks, including image classifica-

tion [1]–[3], action recognition [4], [5] and natural language
processing [6]–[9]. The success of DNNs is largely attributed
to the innovation of effective neural architectures. However,
designing effective architectures often greatly depends on
expert knowledge and human efforts. Thus, it is non-trivial
to design architectures to satisfy the requirements manually.
To address this, neural architecture search (NAS) [10] is
developed to automate the process of the architecture design.
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Existing NAS methods search for effective architectures in
a predefined search space [10]–[12]. To cover as many good
architectures as possible, the search space is often designed to
be extremely large (e.g., ∼1012 in ENAS [13] and ∼1019 in
OFA [14]). Directly searching in such a large space is very
difficult and time-consuming in practice [15]. Specifically,
to explore the large search space, we have to sample and
evaluate plenty of architectures, which is very computationally
expensive and time-consuming. Moreover, we can only access
a small proportion of architectures in the search space due to
the limitation of the computational resources in practice. In
other words, regarding a very large search space, we can only
obtain limited information to guide the architecture search.

To overcome the above difficulties brought by the large
search space, PNAS [16] and CNAS [15] propose to start from
a very small search space to perform an architecture search
and then gradually enlarge the search space by adding nodes
or operations. Recently, AlphaX [17] partitions the search
space into existing good subspaces and unexplored subspaces
and adopts the Monte Carlo Tree Search (MCTS) method to
encourage exploring the good ones. However, these methods
suffer from two limitations. First, these methods still find
architectures from a very large space at each search step, which
may not only result in unnecessary explorations but also affect
the search results. Second, the small search spaces partitioned
by these methods are fixed during the search phase, which
may not be optimal to find good architectures. Thus, how to
find/design a small but effective search space that covers as
many good architectures as possible is an important problem.

To achieve this goal, an underlying hypothesis is that the
neighborhood around an effective architecture is usually a
good subspace for further exploration. In this case, once we
find the small but effective search space around a promising
architecture, it is more likely to find a better architecture
within the subspace rather than the entire search space. We
empirically verify this hypothesis that similar architectures
tend to have close performance (See the results of Figure 6,
as well as the observations in [15], [18]). Inspired by this,
instead of searching in the whole search space, we seek to
limit the search space to a reduced one in each search step
by recognizing and mining a small but effective subspace. In
this sense, we may boost the search performance and search
efficiency as well since we only focus on a mined effective
subspace, in which it is easier to find good architectures than
directly exploring the whole search space.

In this paper, we propose an efficient Neural Architec-
ture Search method via Dominative Subspace Mining (called
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Fig. 1: An illustration of the search process. We find promising architectures in a two-step search manner: 1) we perform global
search to mine/find a dominative subspace from a set of candidates; 2) we move the focus to the subspace and conduct a local
search for effective architectures within it. Then, we update the candidate subspace with the better searched architecture.

DSM-NAS). The key idea is to find/mine a small but effec-
tive/dominative subspace from the whole search space in each
step of the architecture search. To this end, we first construct
a set of candidate subspaces and then build a subspace graph
from them, with edges denoting the relationships/information
among different subspaces. As shown in Figure 1, we first
perform a global search to automatically mine a dominative
subspace from the subspace graph. Then, we focus on the
mined subspace and conduct a local search to obtain the
resultant architectures. It is worth noting that once we find a
better architecture, we also update the subspace graph accord-
ingly. In this way, it becomes possible to gradually find better
architectures during the search process. Moreover, we are able
to further boost search performance of the proposed DSM-
NAS by taking existing well-designed architectures (e.g., OFA
architecture [14]) to construct candidate subspaces. Extensive
experiments in two benchmark search spaces demonstrate the
effectiveness of the proposed method.

Our contributions are summarized as follows:

• Instead of searching in the entire search space, we seek
to find/mine a small but effective/dominant subspace for
each step in the architecture search. With the help of
the mined subspaces, we are able to improve search
performance and efficiency.

• We propose a novel Dominative Subspace Mining algo-
rithm to enhance the performance of neural architecture
search. Specifically, we first perform a global search to
find dominative subspaces and then perform a local search
to obtain the resultant architectures.

• Extensive experiments demonstrate the superiority of the
proposed method over existing NAS methods. More im-
portantly, the searched subspaces also exhibit promising
transferability to new datasets.

II. RELATED WORK

A. Neural Architecture Search

In recent years, NAS [19]–[21] has drawn great attention
for effective architecture design. Traditional reinforcement
learning-based NAS methods [22]–[26] directly maximizes the

expectation of the performance of searched architectures sam-
pled from the whole search space. In contrast, our DSM-NAS
searches in a small and effective subspace instead of the whole
space by employing both global search and local search poli-
cies. In this sense, DSM-NAS alleviates the difficulties due to
a large search space. Gradient-based NAS methods [11], [27]–
[31] find effective architectures by relaxing the search space to
continuous-valued and optimizing by gradient descent. They
introduce differentiable architecture parameters, in which the
network weights and architecture parameters are alternately
optimized. Our proposed method focuses on searching in small
and effective subspaces instead of the entire large space. This
is a significant difference from gradient-based methods, which
typically operate in a continuous relaxation of the whole search
space.

Besides, Evolutionary-based NAS methods [32]–[36] find
promising architectures through crossover and mutation in
the neighborhood/subspace of the population. Our DSM-NAS
differs from these methods in three significant ways. First,
they usually perform crossover and mutation randomly. Our
DSM-NAS searches architectures in the mined subspace with
a learned policy, which results in higher search efficiency.
Second, they usually greedily select the best architecture from
the population for reproduction. In contrast, our DSM-NAS
finds a promising subspace that has the potential to achieve the
largest performance improvement, which helps to encourage
the exploration ability (See Figure 8a). Third, during mutation,
they treat elements in the population independently to find a
subspace. Our method builds a subspace graph to exploit the
relationship among different subspaces to enhance the search
performance (See Figure 8b).

However, traditional NAS methods [22], [37] often require
great computational resources and thus result in unaffordable
time costs. A lot of efforts have been made to improve the
search efficiency of the search process. They mainly focus
on improving the efficiency of architecture performance esti-
mation. Specifically, weight-sharing-based NAS methods [13],
[14] estimate the performance of candidate architectures with-
out the need to train each one from scratch. Instead, they train
a supernet that encompasses all possible architectures under
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consideration. While estimating architectures, their weights are
inherited from the trained supernet, which greatly lowers the
computational cost of architecture evaluation. EcoNAS [38]
observes that most existing proxies exhibit different behaviors
in maintaining rank consistency among architectures. Based on
this, it designs a proxy training strategy that is potentially more
accurate in evaluating architectures on small proxy datasets.

Besides, Zero-cost proxy methods (such as Grad-norm [39],
SNIP [40], GraSP [41] and Synflow [42]) reduce the compu-
tational cost by summing up the saliency value of the model
weights. ZiCO [43] devises a new architecture estimation strat-
egy by calculating Zero-shot inverse Coefficient of Variation
scores with a single forward/backward propagation. These
methods are very efficient since they just require a single
forward/backward propagation while evaluating an architec-
ture. This is in stark contrast to traditional methods that may
require extensive training and multiple iterations to obtain the
performance of an architecture. Unlike these methods which
focus on rapidly evaluating architectures, our method achieves
high efficiency from a different perspective. To be specific,
we reduce the number of architecture evaluations required to
identify promising architectures. To achieve this, our DSM-
NAS focuses on small and effective subspaces that are more
likely to contain high-performing architectures. By narrowing
down the search to these subspaces, the number of required
architecture evaluations decreases. This not only accelerates
the search process but also ensures that the computational
resources are expended on evaluating architectures that have
a higher likelihood of success.

B. Search Space Design of NAS Methods

NAS methods often find promising architectures in a prede-
fined large search space, such as NASNet [44], DARTS [11]
and MobileNet-like [12] search spaces. Most existing methods
directly perform search in these large search spaces, which
may not only result in inefficient sampling but also hamper
the search performance. To address this issue, local search
methods [45] search in an iterative manner. They visit archi-
tectures in the neighborhood of an architecture and update
it with the best-found architecture. This is computationally
expensive since it requires plenty of architecture evaluations.
Recent works, such as PNAS [16] and CNAS [15], implement
a progressive space-growing search strategy. They start from
a compact search space to mitigate the challenges posed by
a large search space, and subsequently expand the search
space by incorporating additional nodes or operations. How-
ever, these methods suffer from two limitations. First, in the
later stages of the search, these methods still try to identify
architectures within an exceedingly large space, potentially
leading to insufficient explorations. Secondly, the small search
spaces delineated by these methods are arbitrarily created
through the addition of nodes or operations and remain static
throughout the search process. This may not be optimal for
discovering high-performing architectures. In contrast, our
DSM-NAS consistently searches in small yet potent subspaces
throughout the entire search process and dynamically identifies
improving and dominant subspaces.

AlphaX [17] and LaNAS [46] build a Monte Carlo Search
Tree to partition the search space into different subspaces ac-
cording to their performance and encourage exploration of the
promising subspaces. Nonetheless, note that the partitioning
process is bound by a predetermined tree structure, which
imposes certain limitations on the method. During each step of
the search, the algorithm is restricted to partitioning based on
the available candidate operations. In contrast, our DSM-NAS
adopts a more flexible and unconstrained approach to navigat-
ing the search space. It focuses on identifying and mining the
dominant subspace, which is determined solely based on the
central architecture of that subspace. It is important to note
that this central architecture is not fixed, but instead can be
any configuration in the entire search space, thus providing a
broader exploration.

Besides, Few-shot NAS [47] adopts multiple sub-supernets
to encompass different regions (i.e., subspaces) of the search
space, aiming for a precise evaluation of architectural perfor-
mance. These subspaces are different from the entire search
space at the beginning and remain constant in subsequent
iterations. In contrast, our DSM-NAS differs from these meth-
ods in two significant ways: 1) DSM-NAS tries to mitigate
the difficulties incurred by a large search space rather than
enhancing architectural performance estimation; 2) DSM-NAS
adopts a dynamic approach, actively searching for the dom-
inant subspaces, instead of relying on static, predetermined
subspaces. RegNet [48] designs an initial search space that is
very large, and then subsequently narrows it down to a more
refined and compact search space through empirical analysis
of the architectural behaviors. It is imperative to highlight
that the entire pipeline operates manually. In contrast, our
DSM-NAS automatically explores dominative search spaces
and identifies promising architectures without the need for
human intervention, thanks to our innovative global and local
search strategies.

III. ARCHITECTURE SEARCH VIA SUBSPACE MINING

In this paper, we propose a neural architecture search
method with Dominative Subspace Mining (DSM-NAS) to
boost both the search performance and efficiency of NAS. In
Section III-A, we first discuss the motivation and provide an
overview of DSM-NAS. Then, we describe the details of the
two key steps in our method, i.e., the global search and local
search in Sections III-B and III-C, respectively. In Table I,
we present some frequently used notations.

A. Motivation and Method Overview

Existing NAS methods often consider an extremely large
search space Ω to find good architectures [11], [13], [14].
However, directly performing architecture search in such a
large search space is non-trivial and often very expensive.
Instead of using the whole search space, it should be possible
to limit each search step within a reduced search space to
boost search performance and search efficiency. To achieve this
goal, an underlying hypothesis is that the neighborhood around
an effective architecture is usually a promising/dominative
subspace for further exploration to find better ones [15], [18].
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Fig. 2: An overview of the proposed DSM-NAS. We build a set of subspaces {Ωαi}Ki=1 centered on randomly sampled candidate
architectures {αi}Ki=1 and construct a subspace graph G to model the relationships among these subspaces. By taking G as
the input, the controller first mines/finds a dominative subspace Ωα ∼ πG(·|G; θG) via global search and then predicts an
architecture modification ∆α ∼ πL(·|Ωα; θL) via local search. Next, we update the candidate architecture α with the resultant
architecture β = α⊕∆α if β has better performance than α (i.e., R(β|α) > 0).

TABLE I: Summary of frequently used notations.

Notation Description

Ω search space
α architecture
Ωα search subspace centered on an architecture α

R(α,wα) performance metric of an architecture α
R(β|α) performance improvement between β and α
πG global search policy
πL local search policy
G subspace graph
K number of candidate subspaces in G
M local search distance
∆α architecture modification
⊕ combination operation

In this case, we are more likely to find effective architectures
in the dominative subspace than the whole space under the
same search budget.

Inspired by this, we propose a new search algorithm by
mining/identifying effective subspaces, in which it is easier
to find good architectures than directly exploring the whole
space. To this end, we define a subspace Ωα based on a center
architecture α within it (See more details in Section III-B). As
shown in Figure 2 and Algorithm 1, we first learn a global
search policy πG to automatically search for a dominative
subspace Ωα based on a center architecture α. Then, we
further learn a local search policy πL to produce the resultant
architectures in the subspace. Specifically, the global search

policy πG takes a set of candidate subspaces {Ωαi
}Ki=1 (as well

as their relationship) as inputs and mines/finds a dominative
subspace Ωα. Based on the mined/searched subspace, the
local policy πL further generates a modification ∆α (i.e.,
modifying some operations of some layers in α) to explore
the subspace. Finally, we combine α and ∆α to obtain the
resultant architecture by

β=α⊕∆α. (1)

Here, ⊕ denotes the combination operation, as will be de-
scribed in Section III-C. Note that ∆α is devised to constrain
the architecture after modifications still in the subspace.

Note that if we directly maximize the performance of the
resultant architecture β, the search algorithm may always
select the same subspace with the best center architecture at
the current step and thus easily get stuck in a local optimum
(See results in Figure 8a). To avoid this, we encourage the
exploration ability by maximizing the performance improve-
ment between β and the center architecture α in Ωα, i.e.,
R(β|α)=R(β,wβ)−R(α,wα), where R(α,wα) denotes some
performance metric (e.g., validation accuracy) and wα denotes
the optimal parameters of α trained on some dataset. This can
be thought of as finding the subspace with the largest potential
to find better architectures, instead of the one containing the
best architecture found previously. Formally, we seek to solve
the following optimization problem:

max
πG,πL

Eα∼πG
[E∆α∼πL

R(β|α)] , s.t. β = α⊕∆α, (2)
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Algorithm 1 Training method for DSM-NAS.

Require: Search space Ω, global policy πG(·; θG) and local policy
πL(·; θL).

1: Train the parameters of the supernet.
2: Randomly sample architectures {αi}Ki=1 from Ω to build the

subspaces {Ωαi}Ki=1 using Eqn. (3).
3: Construct the subspace graph G based on {Ωαi}Ki=1.
4: while not convergent do
5: // Perform global search to mine dominative subspace Ωα

6: Sample a subspace Ωα ∼ πG(·|G; θG) centered on α.
7: // Perform local search in the mined subspace Ωα

8: Sample modifications ∆α ∼ πL(·|Ωα; θL).
9: Build a resultant architecture β = α⊕∆α.

10: Compute reward R(β|α)=R(β,wβ)−R(α,wα) using the
weights inherited from the supernet.

11: // Update subspaces with the locally searched architecture β
12: if R(β|α) > 0 then
13: Replace the candidate subspace Ωα with Ωβ .
14: Update the edges connected to Ωβ in G.
15: end if
16: Update the parameters θG and θL by optimizing Eqn. (2)

using policy gradient [49].
17: end while

Since we would update the searched subspace with the resul-
tant architecture β (See Figure 2), the performance improve-
ment of the previously searched subspace may not always
be the largest one and our method is able to explore other
subspaces in the subsequent iterations.

B. Global Search with Dominative Subspace Mining

As the first step of DSM-NAS, we seek to mine dominative
subspaces via a global search process. Specifically, we first
discuss the construction of candidate subspaces. Then, we
describe the details of our global search algorithm.

Subspace Construction. At the beginning of our search
method, we seek to construct candidate subspaces centered on
a set of architectures for search. To this end, we randomly
collect a set of discrete architectures {αi}Ki=1 from the search
space and build the candidate subspaces {Ωαi

}Ki=1 around
them. Let D(α, β) be a function to measure the Architecture
Distance between two architectures α and β. Specifically, we
take an architecture α as the center of the subspace Ωα and
constrain all architectures β in Ωα to have distances less than
a specific threshold M from the center architecture α, i.e.,
D(α, β) ≤ M . Formally, we construct the subspace Ωα w.r.t. a
center architecture α as:

Ωα = {β | D(α, β) ≤ M,β ∈ Ω}. (3)

Note that architectures in different subspaces may have dif-
ferent operations/topologies and different performances. To ex-
ploit the relationship/information among different subspaces,
as shown in Figure 2, we build a subspace graph G = (V, E)
to guide the search. Here, V is a set of nodes and each
node denotes a specific subspace Ωαi

. E is a set of directed
edges from a weak subspace (with a poor center architecture)
to a better subspace (whose center architecture has higher
accuracy). Note that even when initializing the center archi-
tectures {Ωαi

}Ki=1 randomly, our proposed DSM-NAS is able
to achieve good search performance. We may further improve

DSM-NAS by taking existing well-designed/searched archi-
tectures to construct the subspace (See experimental results in
Tables II and IV).

In the subspace graph G, since the node/subspace Ωα is
uniquely determined by its centered architecture α, we use
the embedding of the architecture α to represent the subspace
Ωα. Specifically, for architecture α, we use the concatenation
of the learnable vector of each component in it to represent the
corresponding embedding hα. For each edge, we represent its
embedding eαα′ by hα′ −hα. The edge in the subspace graph
implies how to modify an architecture to obtain another, e.g.,
replacing convolution with max pooling in some layer. Given
two center architectures, if the components are the same in
some positions, the corresponding part in the edge features
will be zero. In this case, the edges explicitly capture the
information on how to modify one architecture to another,
serving as a rich source of information for the local search
and providing exemplary guidance on how to enhance an
architecture via modification. To verify the significance of the
subspace graph, we conduct ablation studies in Section V-D.
Empirical evidence clearly demonstrates that DSM-NAS with
the subspace graph significantly outperforms its counterpart
without this feature.

Searching for Dominative Subspaces. In each search
step, we conduct a global search to automatically mine/select
a dominative subspace Ωα from all candidate subspaces
{Ωαi

}Ki=1. As mentioned before, we seek to find Ωα that
has the potential to achieve a large performance improvement
R(β|α). (Eqn. (2)). Here, α is the center architecture of
Ωα and β is another architecture in this subspace. To this
end, we devise a controller model that contains a two-layer
graph neural network (GNN) [50] and an LSTM network.
Specifically, to exploit the information of the subspace graph
G = (V, E), we first employ the GNN to extract features from
G. Then, we feed the extracted features into the LSTM that
samples a candidate subspace Ωα via a classifier.

Note that the search performance greatly depends on the
subspaces, if we fix all candidate subspaces in G during
search. In this sense, the controller may get stuck in a local
optimum due to the very limited search space (See results
in Figure 7). To address this issue, we propose a simple
strategy to gradually update/improve the candidate subspaces
{Ωαi

}Ki=1 using the newly searched architectures. Specifically,
for a selected subspace Ωα (See Figure 2 and lines 12-15
in Algoritm 1), we replace its center architecture α with the
locally searched architecture β if β yields better performance
than α. This follows the hypothesis that the subspace around
a better architecture may be more likely to contain promising
architectures. Once the center architecture is updated, the
corresponding subspace Ωα is also updated to Ωβ . Then, we
also update the subspace graph G by updating all the edges
that are originally connected to Ωα. In this way, the candidate
subspaces constantly improve, which helps to explore more
and more promising spaces. After the search, we select the
best center architecture in the subspace graph as the inferred
architecture according to the validation performance.
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Fig. 3: An illustration of the architecture representation method
and calculation of the architecture distance. We represent ar-
chitecture as a string, in which each item denotes an operation
(e.g., convolution). For example, ‘3’, ‘5’ and ‘7’ denote 3×3,
5× 5 and 7× 7 convolution, respectively.

C. Local Search in the Mined Subspace

Given a searched subspace Ωα, we perform local search
to find effective architectures. To guarantee that the search
process is limited to the subspace, we first discuss how to
measure the distance between architectures. Then, we describe
the details of our local search algorithm.

Before defining the Architecture Distance between two
architectures, we first revisit the representation of archi-
tectures, making it easier to understand. Following [13],
[14], we represent an architecture as a L-dimensional string
α=[α(1), α(2), · · · , α(L)], where L is the number of compo-
nents in the architecture and each α(i) denotes some operation
(e.g., convolution). We propose to compute the Architecture
Distance D(·, ·) by counting the number of different com-
ponents between two architectures (See Figure 3). Note that
this distance metric is able to calculate the distance between
two architecture with different depths. For non-existent layers
in the architecture, we use a placeholder value (like “0”) to
ensure that the strings are of the same length. Let 1{·} be
the indicator function. Given two architectures α and β, the
distance between them is

D(α, β) :=

L∑
i=1

1{α(i) ̸= β(i)}. (4)

We empirically demonstrate that the proposed distance
metric is reasonable and effective when considering all compo-
nents in the architecture as equal. This empirical relationship
between accuracy and architecture distance is shown in Fig-
ure 6. We observe that architectures with smaller distances
tend to have similar performance, thereby confirming the
reliability of the proposed distance metric. Interestingly, a
similar phenomenon has also been observed in well-known
NAS methods [15], [18]. This consistency strengthens our
justification for the effectiveness of the proposed distance
metric. Consequently, when we identify a dominant subspace
centered around a high-performing architecture, it becomes
considerably easier to discover better architectures through
local search techniques.

To ensure that the locally searched architecture β belongs
to Ωα, following common practices [13], [15], we adopt
an LSTM model with a local policy πL that modifies the

center architecture α M times. Specifically, for each time
modification, the local policy πL determines which layer has
to be modified and which kind of operation is to be applied
to this layer. Then, by applying ∆α to α, we obtain the
modified/searched architecture β = α ⊕∆α in the subspace.
Such a decision process is as repeated M times to obtain
the complete modification ∆α. The modification process can
be considered as a sequential decision-making process. This
sequential generation process aligns perfectly with the capa-
bilities of LSTM models, which make predictions based on
previously determined results. Note that if πL selects the same
operation as the original one in some layers, it will produce no
modification to the architecture. Thus, after M times single-
layer modification, the resultant architecture β still belongs to
Ωα, i.e., satisfying the constraint D(α, β) ≤ M .

Analysis of the size of local search space. Let L be the
number of components in an architecture and C be the number
of candidate operations for each component. Traditional NAS
methods directly search in the whole search space, whose
size is |Ω| = CL. In our DSM-NAS, given a local search
distance M , the size of the subspace becomes |Ωα|=

(
L
M

)
CM ,

where
(·
·
)

denotes the combination function. When M≪L,
the subspace would be much smaller than the whole space.
In this case, the union of these subspaces constructed with a
small M may not cover the entire search space. Nevertheless,
it is exactly our key idea that we seek to focus on some
promising subspaces instead of the entire search space to
enhance both the search performance and search efficiency. In
practice, taking MobileNet-like search space as an example,
we have C = 9, L = 20 and M = 3. The size of the whole
search space is 920. In contrast, the size of our search subspace
is 20!/(3! × 17!) × 93 = 1140 × 93, which is much smaller
the the size of the whole space. In the extreme case, when we
consider M=L, the subspace is exactly the whole space and
our method reduces to the standard NAS. We investigate the
effect of M on the performance of DSM-NAS in Section V-F.

IV. EXPERIMENTS

The experiments are organized as follows. We first per-
form experiments in NAS-Bench-201 [51] search space to
demonstrate the effectiveness of our DSM-NAS. Then, we
evaluate our DSM-NAS in MobileNet-like [59] search space
and compare the performance of our method with SOTA
methods on a large-scale benchmark dataset ImageNet [60].
Our code and the pretrained models are publicly available at
https://github.com/chenyaofo/DSM-NAS.

A. Performance Comparisons on NAS-Bench-201

Search Space. We apply our DSM-NAS to a cell-based
NAS-Bench-201 search space [51]. Each cell is a directed
acyclic graph with 4 nodes and 6 edges. Each edge is as-
sociated with an operation, which has 5 different candidates,
including zeroize, skip connection, 1×1 convolution, 3×3
convolution and 3×3 average pooling. Since we search for
the candidate operation for each edge, there are 56 = 15625
candidate architectures in total. For each architecture, NAS-
Bench-201 provides precomputed training, validation, and

https://github.com/chenyaofo/DSM-NAS
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TABLE II: Comparisons with existing methods in NAS-Bench-201 [51]. “ImageNet-16-120’” denotes a subset of the ImageNet
dataset with 120 classes and 16×16 resolution. ”Search Cost” denotes the time cost in the search phase (measured by second).
† denotes we implement the baselines with the official code under our same settings. Our DSM-NAS achieves higher accuracy
than state-of-the-art methods with less search cost, which verifies the search performance and efficiency of our method.

Method Search Cost (s) CIFAR-10 CIFAR-100 ImageNet-16-120

Random Search† 25k 93.88±0.27 71.54±1.04 45.19±1.06
REINFORCE [49]† 25k 93.85±0.37 71.71±1.09 45.24±1.18

PNAS [16]† 25k 93.71±0.29 70.89±0.99 44.75±0.80
CNAS [15]† 25k 93.95±0.28 71.73±1.05 45.46±0.97
ENAS [13] – 53.89±0.58 13.96±2.33 14.84±2.10

DARTS [11] 30k 54.30±0.00 15.61±0.00 16.32±0.00
SETN [52] 34k 87.64±0.00 59.05±0.24 32.52±0.21
GDAS [53] 32k 93.61±0.09 70.70±0.30 41.71±0.98

DSNAS [54] – 93.08±0.13 31.01±16.38 41.07±0.09
PC-DARTS [55] – 93.41±0.30 67.48±0.89 41.31±0.22

DARTS- [56] 30k 93.80±0.07 73.02±0.16 46.41±0.14
EZNAS [57] – 93.63±0.12 69.82±0.16 43.47±0.20

GradSign [58] – 93.31±0.47 70.33±1.28 42.42±2.81
ZiCO [43] – 93.50±0.18 70.62±0.26 42.04±0.82

DSM-NAS (Ours) 25k 94.23±0.22 72.76±0.80 46.13±0.67
DSM-NAS+ (Ours) 25k – 73.12±0.61 46.66±0.52

test accuracies on three different datasets, namely CIFAR-
10, CIFAR-100 and ImageNet-16-120. Note that ImageNet-
16-120 is a subset of ImageNet [60] dataset with 120 classes
and 16×16 image resolution.

Implementation Details. Following the settings in NAS-
Bench-201 [51], we use the validation accuracy in epoch 12
as the reward and report the test accuracy in epoch 200 to
compare with other baseline methods. For a fair comparison,
we consider the evaluation time of candidate architectures
when computing the search cost (limited to 25k seconds).
Following the setting in [13], we train our DSM-NAS with a
batch size of 1 and set the strength of the entropy regularizer
to 7.5×10−4. We use an Adam optimizer with a learning rate
of 1× 10−2. We set the number of candidate subspaces K to
4 and the search distance M to 4.

To simplify implementation, we combine global policy πG

and the local policy πL into a single policy to make decisions
to predict the dominative subspace Ωα and the modification
∆α. In other words, we seek to learn a joint policy that
first selects a candidate subspace and then finds a promising
architecture modification in the selected subspace. Note that
combining the global and local policies together is equivalent
to treating them individually. The publicly available source
code demonstrates that the implementation effort required for
our DSM-NAS is comparable to that of traditional reinforce-
ment learning-based NAS methods.

Comparisons with State-of-the-art Methods. We compare
our method with two baselines, namely Random Search and
REINFORCE [49]. Random Search randomly samples archi-
tectures and selects the one with the highest accuracy among
them as the final architecture. REINFORCE performs search
by directly maximizing the expectation of the performance of
sampling architectures with reinforcement learning. We report
the average test accuracy on three datasets over 500 runs with

different seeds. In this experiment, we initialize the subspace
graph with randomly sampled centered architectures. We also
conduct experiments using the subspace graph initialized with
searched well-designed architectures, which achieves better
search performance.

From Table II, compared with the baselines, our DSM-NAS
achieves the highest average accuracy on three datasets, i.e.,
CIFAR-10, CIFAR-100 and ImageNet-16-120. Compared with
REINFORCE [49] baseline, the proposed DSM-NAS yields
better search accuracy and lower variance (e.g., 72.76±0.80%
vs.71.71±1.09% on CIFAR-100). In addition, our DSM-NAS
consistently outperforms the best competitor DARTS- across
all three datasets. This is because our DSM-NAS searches by
focusing on the small but effective subspace, which reduces the
search difficulty resulting from the large search space. During
the search, DSM-NAS updates the candidate subspaces with
the locally searched architectures and finds better architectures
in the constantly improved subspaces. Besides, our DSM-NAS
not only delivers superior performance but also achieves them
with greater efficiency. It requires only 25k seconds for the
search process, compared to DARTS [11] (30k) and DARTS-
[56] (30k), and GDAS [53] (32k). This significant reduction
in search time underlines the methodological efficiency of
DSM-NAS, which concentrates on mining potent subspaces
automatically, rather than combing through the entire search
space exhaustively.

Transferability of Subspace Graph to New Datasets.
When we search on a new target dataset, we often have
to search from scratch (i.e., initializing candidate subspaces
with randomly sampled architectures). Instead of initiating the
search from scratch with randomly sampled architectures, we
can leverage promising architectures from existing datasets
to initialize candidate subspaces. This variant of our method,
called DSM-NAS+, not only potentially reduces computational
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TABLE III: Comparisons with existing methods in NAS-
Bench-360 [61]. We report the classification error (%) and
mean square error in the NinaPro and Darcy Flow, respectively.
In both tasks, smaller metrics represent better performance.
For a fair comparison, the search cost of all the methods is
limited to 25k seconds. Thus we do not report the search cost.

Method NinaPro ↓ Darcy Flow ↓

Random Search 8.09±0.71 0.0252±0.006
REINFORCE [49] 8.07±0.73 0.0247±0.006

Evolution [37] 8.15±0.85 0.0244±0.006
BOHB [62] 8.17±0.57 0.0194±0.002

Hyperband [63] 8.16±0.57 0.0191±0.002
ENAS [13] 11.56±1.12 0.253±0.000

DARTS [11] 22.06±2.00 0.150±0.093
RSWS [64] 9.82±1.49 0.221±0.045
GDAS [53] 17.61±6.39 0.180±0.103
SETN [52] 14.56±7.30 0.253±±0.000

EZNAS [57] 7.34±0.32 0.0242±0.022
GradSign [58] 7.65±0.86 0.0228±0.085

ZiCO [43] 7.49±0.25 0.0223±0.043

DSM-NAS (Ours) 6.76±0.12 0.0211±0.030

costs but also enhances performance, ensuring a more efficient
and effective search process. To verify this, we conduct
experiments on NAS-Bench-201 by considering CIFAR-10 as
the existing dataset and CIFAR-100 as well as ImageNet-16-
120 as two new target datasets. Since CIFAR-10 is the origi-
nal/existing dataset, conducting a direct evaluation on CIFAR-
10 is meaningless. The ”-” symbol underscores CIFAR-10’s
role as a source dataset used to inform our search strategy,
rather than as a target for performance evaluation.

From the results in Table II, DSM-NAS+ with the
subspaces transferred from CIFAR-10 achieves higher
accuracy and lower variance than DSM-NAS without
that (73.12±0.61% vs. 72.76±0.80% on CIFAR-100,
46.66±0.52% vs. 46.13±0.67% on ImageNet-16-120). This
is because that the well-designed architectures on CIFAR-10
may also have high performance on the other datasets (e.g.,
CIFAR-100 and ImageNet-16-120). Thus, subspaces searched
in CIFAR-10 provide a good initialization when searching
in a new dataset. Employing additional data from CIFAR-10
gives DSM-NAS a strategic advantage. This approach is
particularly useful when adapting to a new target dataset.
This strategy not only potentially lowers computational costs
but also boosts performance, ensuring a more efficient and
productive search.

B. Performance Comparisons on NAS-Bench-360

We further apply DSM-NAS to NAS-Bench-360 [61] bench-
mark. In addition to the image classification task, we further
consider the tasks of electromyography signals classification
and partial differential equations (PDEs) solving. We first
provide the details of tasks and implementation and then
compare our DSM-NAS with state-of-the-art methods.

Considered Tasks. Following NAS-Bench-360, we con-
sider two more tasks, i.e., NinaPro and Darcy Flow. NinaPro

seeks to classify hand gestures indicated by electromyography
signals. We use a subset of the NinaPro DB5 dataset [65]
that contains EMG signals from 10 test individuals with 18
different hand gestures. Darcy Flow is a regression task that
focuses on mapping from the initial conditions of a PDE to the
solution at a later timestep. Its input is a 2d grid specifying
the initial conditions of a fluid, and the output is a 2d grid
specifying the fluid state at a later time, with the ground truth
being the result computed by a traditional solver. We use the
same Darcy Flow dataset that was used in [66]. We report
the mean square error. Note that NAS-Bench-360 provides
precomputed accuracies on these datasets.

Implementation Details. Following the settings in NAS-
Bench-360, the search space is also the same as NAS-Bench-
201. The hyperparameters for policy learning are the same
as those in NAS-Bench-201. Specifically, we train our DSM-
NAS with a batch size of 1 and set the strength of the entropy
regularizer to 7.5 × 10−4. We use the Adam optimizer with
a learning rate of 1 × 10−2. We set the number of candidate
subspaces K to 4 and the search distance M to 4.

Comparisons with State-of-the-art Methods. In Table III,
we compare our DSM-NAS on the NinaPro and Darcy Flow
tasks of the NAS-Bench-360 benchmark. We report the av-
erage test accuracy over 500 runs with different seeds. Our
DSM-NAS achieves high accuracy than REINFORCE [49]
(0.0211 vs. 0.0252 on Darcy Flow) and Evolution [37] (0.0211
vs. 0.0247 on Darcy Flow) baselines. Compared with the
weight-sharing based NAS methods (e.g., ENAS [13] and
DARTS [11]), DSM-NAS still outperforms them. This su-
perior performance can be attributed to DSM-NAS’s focus
on a smaller, more effective subspace of the search space,
as opposed to exploring the entire vast search space. This
approach reduces the complexity of the search, making it more
likely to yield promising architectural designs. The results
verify the effectiveness of DSM-NAS across various tasks,
extending beyond the realm of image classification.

In addition, we find that weight-sharing NAS methods
(i.e., ENAS [13], DARTS [11], RSWS [64], GDAS [53] and
SETN [52]) achieve worse performance than the Random
Search baseline on the NinaPro dataset. The reasons may
be twofold. First, the primary issue with weight sharing
in methods like ENAS [13] is multi-model forgetting [67],
[68], where the performance of previously trained models
deteriorates due to the overwriting of shared parameters during
sequential training of multiple networks. The degree of per-
formance degradation is directly proportional to the amount
of shared weights, with more sharing leading to greater im-
pacts. Additionally, the complexity of optimization increases,
making it more challenging to improve subsequent models
without negatively affecting the performance of earlier ones.
These challenges underscore the need for careful parameter
management to minimize performance interference between
models. Therefore, weight sharing cannot provide accurate
model performance evaluation, leading to limited search per-
formance. Second, prior studies [56], [61] demonstrate that the
search process in methods like DARTS [11], unintentionally
prefers architectures with a higher number of skip connections.
While a balanced number of skip connections can boost
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TABLE IV: Comparisons of the architectures searched/designed by different methods on ImageNet. “–” means unavailable
results. “#Queries“, a widely used metric [69], [70], denotes the number of architecture-accuracy pairs queried from supernet
or performance predictor during the search. A smaller “#Queries“ means the search algorithm is more efficient. Our DSM-NAS
outperforms most human-designed and automatically searched architectures with less search cost and fewer search queries.

Search Space Architecture Test Accuracy (%) #MAdds (M) #Queries (k) Search Time
Top-1 Top-5 (GPU days)

–
ResNet-18 [1] 69.8 89.1 1,814 – –

MobileNetV2 (1.4×) [71] 74.7 – 585 – –
ShuffleNetV2 (2×) [72] 73.7 – 524 – –

NASNet NASNet-A [44] 74.0 91.6 564 20 1800
AmoebaNet-A [37] 74.5 92.0 555 20 3150

DARTS

DARTS [11] 73.1 91.0 595 19.5 4
P-DARTS [73] 75.6 92.6 577 11.7 0.3

CNAS [15] 75.4 92.6 576 100 0.3
AlphaX [17] 75.5 92.2 579 – 12
DARTS- [56] 74.6 92.1 547 93.6 4.5

Shapley-NAS [29] 76.1 – 582 – 4.2
RF-DARTS [30] 76.0 92.4 593 93.6 –

MobileNet-like

RLNAS [74] 75.6 92.6 473 – –
AtomNAS [75] 75.9 92.0 367 78 –

Few-shot NAS [47] 75.9 – 521 – 11.6
FairNAS [76] 77.5 93.7 392 11.2 12

DNA [77] 78.4 94.0 611 – 32.6
FBNetV2 [78] 77.2 – 325 11.5 25

EfficientNet-B1 [79] 79.2 94.5 734 – –
OFA-Large [14] 80.0 94.9 595 20 51.7
Cream-L [80] 80.0 94.7 604 – 12
NEAS-L [33] 80.0 94.8 574 – <13

GM [81] 76.6 93.0 530 – 24.9
MAGIC-AT [82] 76.8 93.4 598 – –
NAS-LID [83] 77.1 93.7 678 – 2.3

ZiCo [43] 79.4 – 603 0.4
DSM-NAS (Ours) 79.9 94.8 597 10 0.8

DSM-NAS+ (Ours) 80.2 94.9 582 10 51.7+0.8

performance, prompting NAS algorithms to favor the skip
connection operation, an excessive focus on this aspect often
leads to less optimal search results. Excessive reliance on
skip connections would affect search performance, producing
architectures overwhelmed by these operations and reducing
their overall effectiveness. This narrows the diversity of the
explored architecture space and overfits to a particular pattern,
which may not necessarily result in superior performance.

C. Performance Comparisons on ImageNet

Search Space. In this experiment, we further evaluate our
method on another benchmark search space, i.e., MobileNet-
like search space [59]. The candidate architecture consists of
5 different units and each of them has consecutive layers. We
search for MBConv in each layer with kernel sizes R selected
from {3, 5, 7}, expansion ratios E selected from {3, 4, 6} and
the number of layers in each unit selected from {2, 3, 4}.
To encode the architecture, we use a string of length 20, in
which the element in the string represents the combination

setting of the expansion ratio and the kernel size. For instance,
the element “0” denotes non-existent layer, “1” denotes the
layer with E = 3 and R = 3, “2” denotes the layer with
E = 3 and R = 4, and so on. In this case, we ensure that
our proposed method can effectively calculate the distance
between architectures with varying depths.

Following [84], we randomly choose 10% classes from
the original dataset as the training set to train the supernet.
We measure the validation accuracy of sub-networks on 1000
validation images sampled from the training set. We train the
supernet with a progressive shrinking strategy [14] for 90
epochs. To compute the performance improvement R(β|α)
with the validation accuracy, we train a predictor to predict
the validation accuracy following [14].

Implementation Details. Following [13], we train DSM-
NAS for 10k iterations with a batch size of 1. We use an
Adam optimizer with a learning rate of 3×10−4. To encourage
exploration of DSM-NAS, we add an entropy regularizer to the
reward weighted by 1×10−3. We set the number of candidate
subspaces K to 10 and the local search distance M to 3. We
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Fig. 4: The architecture searched by DSM-NAS in MobileNet-like search space.
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Fig. 5: The architecture searched by DSM-NAS+ in MobileNet-like search space.

report the search cost based on the NVIDIA Tesla V100 GPU.
Following the mobile setting [11], we constraint the number
of multiply-adds (#MAdds) of the searched architecture to
be less than 600M. To achieve this, we update the candidate
subspace (line 12 in Algorithm 1) with the architecture that
has #MAdds less than 600M. To accelerate model evaluation,
following [14], [32], we first obtain the parameters from the
full network of OFA and then finetune them for 75 epochs on
the ImageNet training set (containing 128k images). We use
a batch size of 512 and an SGD optimizer with a learning
rate of 0.012. The learning rate decay follows the cosine
annealing strategy with a minimum of 0.001. We perform data
augmentations including horizontally flipping, random crops,
color jittering, and AutoAugment.

Comparisons with State-of-the-art Methods. To investi-
gate the effectiveness of the proposed method, we apply our
method to MobileNet-like search space as two variants: 1)
DSM-NAS searches based on the subspace graph initialized
with randomly sampled architectures, which is suitable in the
scenario without any available well-designed architectures. 2)
DSM-NAS+ adopts the subspace graph which is initialized
with a set of existing well-designed architectures searched by
OFA [14]. Note that our DSM-NAS outperforms SOTA meth-
ods and DSM-NAS+ further boosts the search performance.

As shown in Table IV, under the mobile setting, the archi-
tecture searched by DSM-NAS reaches 79.9% top-1 accuracy
and 94.8% top-5 accuracy, which outperforms not only the
manually designed architectures but also most automatically
searched ones. Specifically, DSM-NAS outperforms the best
manually designed architecture (i.e., MobileNetV2) by 5.2%
(i.e., 79.9% vs. 74.7%). Compared with the state-of-the-
art NAS method (e.g., OFA and Cream-L), DSM-NAS also
achieves competitive performance (i.e., 79.9% vs. 80.0%) with
fewer number of queries and search cost (only 0.8 GPU days).
Here, the lower costs mainly benefit from two aspects: 1)
accelerating the search policy learning by reducing the number
of queries (ours 10k vs. OFA 20k); 2) accelerating the supernet
training by using a proxy dataset (ImageNet-100) and early
stop (training 90 epochs). These results show the effectiveness
and efficiency of the proposed DSM-NAS.

Compared with zero-shot NAS method ZiCo [43], DSM-
NAS achieves higher accuracy than ZiCO (79.9% vs. 79.4%)
under the mobile setting (#MAdds < 600M). The potential
reasons are that our DSM-NAS searches by focusing on
the small but effective subspace, which reduces the search
difficulty resulting from the large search space, while ZiCo
adopts a vanilla evolutionary algorithm that still searches in
the whole search space. As for the search cost, DSM-NAS
consumes more GPU resources than ZiCO (0.8 vs. 0.4 GPU
days). The reason is that DSM-NAS needs to train a supernet
(0.7 GPU days) on a proxy ImageNet subset, which is costly
compared with the zero-shot proxy used in ZiCO.

Compared with DSM-NAS, our DSM-NAS+ further im-
proves the top-1 accuracy on ImageNet from 79.9% to 80.2%.
Note that DSM-NAS+ outperforms all of the considered
manually-designed and automatically searched architectures.
The reason is that DSM-NAS searches for the dominative
subspace from randomly initialized candidates and needs to
improve the candidate subspaces gradually. Instead, DSM-
NAS+ directly employs the dominative subspaces centered
on a set of well-designed architectures at the beginning of
the search. In this case, the architectures in such initialized
subspaces have better performance than that in randomly
initialized subspaces, which accelerates the search process by
providing good subspace initialization centered on the good
architectures. The results demonstrate that we are able to apply
our method to existing designed architectures/subspaces to
further enhance the search performance.

Visualization of Searched Architectures. We show the
visualization results of DSM-NAS (top-1 accuracy 79.9%)
and DSM-NAS+ (top-1 accuracy 80.2%) in MobileNet-like
search space in Figure 4 and Figure 5, respectively. From
the visualization results, we find that the number of conv
5 × 5 and conv 7 × 7 is much larger than the number of
conv 3 × 3. The reason may have two aspects. First, conv
5× 5 and conv 7× 7 have a larger reception field and larger
model capacity with more parameters than conv 3 × 3 [85].
Second, larger conv operations may help the network preserve
more information when doing downsampling (mentioned by
ProxylessNAS [86]). In this case, architectures with conv 5×5
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(b) Comparisons in MobileNet-like search space.

Fig. 6: The performance difference that is measured by accuracy (%) vs. the architecture distance in NAS-Bench-201 search
space (a) and MobileNet-like search space (b).

and conv 7 × 7 may often be beneficial to achieve better
performance than that with conv 3×3. Similar results of ”large
convs are dominated” can also be found in [14], [86].

V. MORE ABLATION STUDIES

In this section, we perform more experiments to demon-
strate the effectiveness of the proposed architecture distance
(Section V-A), the proposed subspace updating scheme (Sec-
tion V-B), the proposed performance improvement reward
(Section V-C), and the subspace graph (Section V-D). In
addition, we conduct ablations to investigate the effect of the
number of candidate subspaces K and the local search spaces
in Sections V-E and V-F, respectively.

A. More Discussions on Architecture Distance

As mentioned before, our method is built upon an un-
derlying hypothesis that the neighborhood around a good
architecture is usually a dominative subspace. In other words,
the architectures in the neighborhood/subspace are more likely
to have good performance. In this sense, once we find a
dominative subspace centered on a good architecture, it would
be much easier to find better architectures via a local search. To
build such subspace around a given architecture, we devise an
Architecture Distance D(·, ·) to measure the distance between
two architectures. In the following, we provide empirical
results in NAS-Bench-201 and MobileNet-like search spaces
to demonstrate that the devised distance function is able to
support the hypothesis. We conduct experiments in NAS-
Bench-201 and MobileNet-like search space by computing the
performance difference (measured in accuracy) between two
architectures with different distances.

We show the results over 100 different trials in Figure 6.
From the results, the average accuracy difference between two
architectures becomes larger when their distance increases. For
example, in NAS-Bench-201 space, the accuracy difference
increases from 4.49 to 6.69 when the distance grows from 1
to 2. Meanwhile, the variance of the performance difference
also increases as the corresponding distance grows (e.g.,
increasing from 6.1 to 9.5 when the distance grows from 1
to 2). The results demonstrate the rationality and effectiveness

of the designed architecture distance, i.e., architectures with
smaller distances (in the same subspace) tend to have similar
performance. Thus, we are able to find promising architectures
in a dominative subspace around existing good architectures
more easily than the overall search space. Similar observations
are also found in NAS-Bench-101 [18] search space.

We find that the performance difference in the NAS-Bench-
201 search space is more obvious than the MobileNet-like
search space. The is because that the candidate operations are
different in these two search spaces In the NAS-Bench-201
search space, the available operations are: (1) zeroize, (2) skip
connection, (3) 1-by-1 convolution, (4) 3-by-3 convolution,
and (5) 3-by-3 average pooling. The ”zeroize” operation
essentially drops the features, leading to a substantial impact
on model performance. When an architecture undergoes a
transition that involves the ”zeroize” operation, the model
performance changes sharply. Instead, in the MobileNet-like
search space, we search for the expansion ratio and kernel
size from {3, 4, 6} and {3, 5, 7}, respectively. Unlike the
NAS-Bench-201 space, the MobileNet-like search space does
not include the ”zeroize” operation. As a result, changes in
architecture distance tend to produce more subtle variations.

B. Effect of Subspace Updating Scheme

In the global search, if we keep all candidate subspaces
fixed, the controller may get stuck in a local optimum due
to the very limited search spaces, which would lead to poor
search performance. To address this issue, we propose a simple
strategy to gradually update the candidate subspaces with
the locally searched architectures. To be specific, we replace
the center architecture α in the mined subspace with locally
searched architecture β if β has better performance than α.
This simple updating strategy ensures the candidate subspaces
would become more and more promising, which helps to find
good architecture within the gradually improved subspaces
during the local search process.

To verify the effectiveness of the proposed subspace updat-
ing scheme, we conduct more experiments on NAS-Bench-
201 and compare our DSM-NAS with three baselines and
variants, namely Random Search in Overall Search Space,
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Fig. 7: Comparisons of the search performance with/without subspace updating on NAS-Bench-201.

Random Search in Mined Search Space, Random Search with
Subspace Update and DSM-NAS without Subspace Update.
The first two baselines conduct a random search in the entire
search space and the mined subspace in the final search step
of our method, respectively. The third baseline performs a
random search with our proposed subspace update strategy.
The variant DSM-NAS without Subspace Update uses the same
settings as our method but performs a search without updating
the candidate subspaces.

From the results in Figure 7, random search in the mined
subspace (orange) has higher average accuracy and lower
variances than that in the overall search space (purple), i.e.,
91.89±1.53% vs. 87.37±9.71%, which demonstrate the effec-
tiveness of the proposed subspace updating scheme. Our DSM-
NAS with subspace (red) updating outperforms DSM-NAS
without that (blue) on three considered datasets. The results
indicate that DSM-NAS constantly can find dominative sub-
spaces during the search, which also shows the effectiveness
of the subspace updating scheme. In addition, compared with
the baseline that searches randomly in the mined subspace,
DSM-NAS consistently achieves better search accuracy. The
experimental results demonstrate that the local search scheme
is able to further enhance the search performance by finding
promising architectures in the mined subspace. In addition,
the random search with a subspace update baseline (cyan)
surpasses the performance of the standard random search
across the entire search space (purple). This improvement
suggests that updating the search subspace leads to the iden-
tification of more promising regions within the search space.
However, random search with subspace update (cyan) does
not perform as well as random search in a mined search space
(orange). This implies that relying solely on random search is
insufficient for effectively finding the most effective subspaces.

As for the search speed, random search baselines require
less than 1 microsecond to sample architectures from a uni-
form distribution since it does not depend on any heavy deep
models. We sample a total of 100 architectures and then select
the one with the highest predicted accuracy. The total time
for this process is less than 1 second. For DSM-NAS, the
controller requires 0.1 seconds to generate an architecture
by performing global and local searches and 0.22 seconds
to update the policy parameters according to the estimated
performance by the performance predictor. In MobileNet-like
search space, we train the controller for 10k iterations with
a batch size of 1 following [13]. Thus, the policy search

cost is 1 GPU hour (i.e., 0.04 GPU days). Though random
search requires a very low search cost, it struggles to uncover
promising architectures because of its unplanned attempts. In
contrast, DSM-NAS significantly outperforms random search
baselines. This is attributed to our innovative global and local
search strategy, which iteratively identifies promising archi-
tectures by leveraging knowledge from previous explorations.
This strategic method ensures a more directed and efficient
search process, leading to superior performance in finding
optimal architectures.

C. Effect of the Performance Improvement Reward

In policy learning, we use the performance improvement
between the resultant β and the center architecture α in Ωα

as the reward. Besides this, one can learn the policy by
considering the performance of β as the reward. However, the
policy may easily get stuck in a local optimum and always
select the same subspace with the highest-performing center
architecture. To verify this, we conduct more experiments in
the MobileNet-like search space on ImageNet to compare the
search performance with these two kinds of reward functions.
All the hyperparameters are the same as in Section IV-C. We
report the validation accuracy over 10 different runs estimated
by the accuracy predictor and compare our DSM-NAS with
the variant. For the tested variant, we maintain consistency in
all experimental conditions except for the component under
examination.

In Figure 8(a), we employ a variant as the baseline to verify
the effectiveness of the proposed reward function. This variant
directly uses the performance of the resultant architecture β as
reward in policy learning. From the results, DSM-NAS using
the performance improvement (red) achieves higher search
performance than that using the performance of resultant archi-
tecture (blue) (67.81±0.18% vs. 67.63±0.31%). In addition,
maximizing the performance improvement finds more new
subspaces than using the absolute performance during the
search process (319 vs. 284). The reason is that if we directly
maximize the performance of the resultant architecture β, the
search algorithm may always select the same subspace with
the best architecture. In this case, the remaining subspaces are
ignored, which results in poor explorations during the search.
In contrast, using performance improvement encourages ex-
plorations among different subspaces.
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Fig. 8: Comparisons of the search performance with different reward functions(a) and with/without subspace graph(b) in
MobileNet-like search space on ImageNet.

D. Effect of Subspace Graph

We build the subspace graph with a set of candidate
subspaces. In the graph, nodes denote candidate subspaces
and direct edges denote the relationships among them. In
practice, we represent direct edges as a modification vector
that implies how to modify the center architecture in the
weak subspace to that in the better subspace. These edges
take helpful information for the local search since they are
good examples to represent how to modify an architecture to
a better one for the local policy. In addition, the architectures
in different subspaces may have different computational oper-
ations/topologies and different performances. In this case, the
graph structure in the subspace graph may convey beneficial
information to select a dominative subspace in the global
search.

We investigate the effect subspace graph by perform-
ing more experiments in the MobileNet-like search space
with/without the subspace graph structure. The experimental
setup is the same as that in Section V-C. Specifically, we
perform an ablation study by comparing our DSM-NAS with a
variant without the subspace graph structure. For this variant,
we treat the candidate subspaces as separate points and ex-
tract the features from them using two fully-connected layers
instead of the two-layer graph neural network. We show the
results in Figure 8(b). We report the averaged validation accu-
racy (obtained by the supernet) over 10 different runs. From
the results, DSM-NAS with subspace graph (red) has not only
higher validation accuracy but also lower variance than DSM-
NAS without that (blue) (67.81±0.18% vs. 67.12±0.46%).
The results demonstrate the significant role of the subspace
graph in guiding the search process. Our DSM-NAS with the
subspace graph outperformed the variant without it, highlight-
ing the graph’s effectiveness in narrowing the search scope
and concentrating efforts on promising architectural regions.

E. Effect of the Number of Candidate Subspaces

We build the subspace graph with K architectures and thus
have K candidate subspaces {Ωαi}Ki=1. When we consider a
small K, the information carried by the subspaces would be
limited, resulting in poor search performance. In contrast, a
larger K means more exploration in the candidate subspaces.
Nevertheless, too many candidate subspaces would introduce

a heavy computational burden since the computational cost
of the GNN increases quadratically as K becomes larger. To
investigate the effect of K, we conduct an ablation study with
different K on ImageNet. For fair comparisons, we set the
number of each subspace updates in the graph to be the same.

In Figure 9(a), DSM-NAS achieves the worst validation
accuracy when K=1 since it only explores a single subspace
during the search process, which greatly depends on the
initialized architecture. As K becomes larger, DSM-NAS
achieves better validation accuracy. The reason is that more
architectures benefit the search by exploring more diverse
dominative subspaces. In this case, DSM-NAS has a larger
probability of finding promising architectures. Besides, when
K is larger than 10, DSM-NAS yields very similar search
performance. These results demonstrate that using 10 different
subspaces is sufficient to achieve competitive performance.
Thus, we set K to 10 on ImageNet.

F. Effect of the Local Search Distance
When performing the local search in Ωα, we use a hyper-

parameter M to restrict the size of the local search subspace.
A smaller search distance M means that we perform the local
search in a smaller subspace. Note that searching in small
but effective subspaces is exactly our core idea to enhance
both search performance and efficiency. In contrast, a larger
M enables DSM-NAS to explore more architectures in the
search space but makes it harder to explore the whole search
space. Note that the maximum of M equals to the number of
components L in the architecture, i.e., M=L. To investigate
the effect of M , we conduct experiments with a more different
search distance M ∈ {1, 3, 5, 10, 20} in MobileNet-like search
space (L = 20 in this space).

In Figure 9(b), DSM-NAS achieves the best validation
accuracy when M=3 and the worst validation accuracy when
M=20. When M is too small (e.g., M=1), it is easy to fall
into the local optimum and hard to find better architectures
in the subspace, resulting in poor search results. When M
becomes larger (e.g., M>3), the large search space lowers
the search efficiency and makes it difficult to find good
architectures. In this case, the search performance of larger
search space drops greatly compared with that of small search
space (e.g., only 63.84% when M=20). Thus, we set the
search distance M to 3 in the MobileNet-like search space.
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Fig. 9: Comparisons of search performance with different candidate subspaces (a) and different local search distances (b).

VI. MORE DISCUSSIONS OF DSM-NAS

A. More Discussions on Computational Complexity

The computational/time cost of DSM-NAS consists of two
parts, i.e., the performance estimation cost and policy learning
cost. 1) Cost of Architecture Performance Estimation. To
assess the candidate architectures, we train a supernet on 10%
of the original dataset’s classes, as suggested by [84]. We then
evaluate the validation accuracy of sub-networks on a subset
of 1000 validation images. The supernet is trained with a pro-
gressive shrinking strategy [14] over 90 epochs. Additionally,
to compute the performance improvement R(β|α) with the
validation accuracy, we train a predictor to estimate validation
accuracy. Together, training the supernet and the predictor
requires approximately 0.75 GPU days on an NVIDIA V100
GPU. 2) Cost of Policy Learning. In Mobilenet-like search
space, the controller, composed of a two-layer Graph Neural
Network (GNN) and an LSTM, is trained over 10k iterations.
Each iteration includes forward and backward propagations,
consuming 2.73M FLOPs per iteration, totaling 27.3G FLOPs.
The overall training time for the controller is about 1 GPU
hour (0.04 GPU days).

B. More Discussions on Advanced Subspace Search Strategies

DSM-NAS facilitates extensive exploration beyond the ini-
tially identified dominant subspace through two key strategies:
1) Policy Learning for Diversity: In Eqn. (2), we have intro-
duced a unique policy update strategy that prioritizes perfor-
mance improvement over absolute performance. This method
helps avoid local optima by encouraging the exploration of
new subspaces whenever the incremental performance im-
provement is negligible. This is because if the policy is in
a local optimum, the performance improvement would be
around zero. In this case, DSM-NAS would be encouraged
to explore other subspaces in the subsequent iterations, which
boosts the diversity of the explored search subspaces. 2)
Dynamic Subspace Graph Update: We dynamically update the
subspace graph based on the performance of newly discovered
architectures. When an architecture is identified that performs
better than the current ones, the subspace graph is updated
to include a new subspace centered around this superior
architecture. By only updating the subspace with a clear
performance improvement, we maintain the integrity of our

search results and ensure that the subspaces we identify are
always promising and accurate regions of the search space.

C. Mutual Influence of Global and Local Search

In this section, we depict the mutual influence, relationship
and contributions of our global and local search strategies.

1) Mutual Influence and Relationship: The global search
seeks to identify a dominative subspace from a set of candidate
subspaces, mining a small and effective search space for
further exploration. Once a dominative subspace is determined,
the local search operates within this subspace to find effective
architectures. The mutual influence is evident as the results
of the local search feed back into the global search. In this
sense, the relationship between local and global search is
complementary. When a better architecture is found through
local search, we update the subspace graph with this architec-
ture, which in turn influences subsequent global searches. This
creates a feedback loop where the global search helps to guide
the local search to promising regions, and the local search
helps to improve the subspaces for the next global searches.

2) Contributions of Global and Local Search: By identifying
small and effective subspaces, the global search significantly
reduces the complexity of the search problem. This contribu-
tion is crucial in the early stages of the search process, where
the need for a broad overview and quick narrowing down of
the search space is imperative. On the other hand, the local
search shines in its capacity for detailed exploration within the
confined areas identified by the global search. Its contribution
is most noticeable in meticulously exploring the narrowed-
down space to find effective architectures.

D. More Discussions on Initial Subspaces

The search performance of our DSM-NAS depends on the
initial conditions, particularly the number of initial subspaces
K. However, our DSM-NAS does not need a great number of
initial subspaces from three aspects:

Our proposed strategy significantly increases the diversity of
the explored subspace. Our DSM-NAS incorporates advanced
exploration strategies specifically designed to navigate through
large search spaces effectively. Specifically, as detailed in
Eqn. (2), we employ a policy optimization scheme that priori-
tizes performance improvement over the absolute performance
of the resultant architecture. This strategy targets subspaces
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with the highest potential to yield superior architectures, rather
than those that merely present the best-found architecture at
the moment. Our empirical analysis (refer to Figure 8(a))
demonstrates that our DSM-NAS is capable of exploring a
more diverse range of subspaces in subsequent search phases.
This significantly diminishes the risk of overfitting to initially
sampled subspaces.

Transferring from previously searched architectures im-
proves the initialization of candidate subspaces. In addition
to employing a random initialization strategy for candidate
subspaces, our DSM-NAS enhances search performance by
utilizing well-designed or previously searched architectures.
This is evident from the results shown in Tables II and IV,
where initializing with promising architectures leads to im-
proved outcomes. By integrating prior knowledge of effective
architectural patterns, we establish a robust mechanism for
initializing candidate subspaces. This not only reduces our
dependence on a large number of initial subspaces to compre-
hensively explore the search space but also allows us to focus
our efforts on the neighborhood of promising subspaces. Such
a targeted search approach effectively addresses the challenges
of large search spaces and variability due to initial conditions,
thereby enhancing the effectiveness of our algorithm.

Empirical studies have confirmed that K=10 is sufficient for
exploring a large search space effectively. We have conducted
ablations to investigate the effect of the number of candidate
subspaces in MobileNet-like search space. It is crucial to high-
light that this search space is exceptionally vast, with its size
reaching up to 1019, significantly surpassing the dimensions of
other adopted search spaces such as NAS-Bench-201, which
has a size of 105. Our empirical findings reveal that setting
K=10 is sufficient to achieve promising search performance,
demonstrating that even in extensive search spaces, a modest
value of K can yield satisfactory results. Interestingly, when
K>10, the performance stabilizes and exhibits negligible
variations, indicating a plateau in performance gains. This
suggests that the necessity for a substantial value of K to
ensure optimal performance as highlighted in the initial query,
may not be as critical as presumed in large search spaces.

E. More Discussions on Convergence Property
DSM-NAS employs a dynamic subspace update strategy, a

pivotal feature designed to iteratively refine the search sub-
space, thereby improving the search’s efficacy and efficiency.
This strategy is governed by a key rule: only those subspaces
that yield superior performance architectures are considered
for replacing and updating existing ones. This targeted updat-
ing mechanism ensures that the search is consistently steered
towards more promising areas within the architecture space.
Given a sufficiently large number of iterations, we anticipate
that DSM-NAS will converge as it increasingly focuses the
search on subspaces that demonstrate consistent improvements
over previous iterations. This iterative refinement process,
driven by a performance optimization goal, is indicative of
a convergence towards an optimal or near-optimal solution in
the architectural space.

While our manuscript does not provide traditional mathe-
matical proofs of convergence and optimality, the design and

operational logic of the algorithm, particularly the dynamic
subspace update strategy, offer a conceptual basis for expecting
properties of convergence and optimality. Additionally, the
experimental results presented in Tables II and IV validate the
effectiveness of DSM-NAS. Together, the analytical insights
and empirical evidence presented address the concerns about
the theoretical underpinnings of our algorithm.

VII. CONCLUSION

In this paper, we proposed a Neural Architecture Search
method via Dominative Subspace Mining (DSM-NAS), which
focuses on automatically mining small and effective subspaces
and conducts a search in them. Specifically, we first perform
a global search for a dominative subspace from the candidate
subspaces. Then, we perform a local search for effective archi-
tectures in the globally searched subspace instead of the orig-
inal large one. Finally, we update the candidate subspace with
the locally searched architecture. Moreover, DSM-NAS further
enhance search performance by taking well-designed/searched
architectures as the prior knowledge. Extensive experiments on
several benchmark search spaces demonstrate the superiority
of our method over the considered methods.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations, 2021, pp. 1–21.

[3] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in IEEE International Conference on Computer Vision, 2021.

[4] H. Duan, Y. Zhao, Y. Xiong, W. Liu, and D. Lin, “Omni-sourced webly-
supervised learning for video recognition,” in European Conference on
Computer Vision, 2020, pp. 670–688.

[5] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks
for video recognition,” in IEEE International Conference on Computer
Vision, 2019, pp. 6201–6210.

[6] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” in International
Conference on Learning Representations, 2018, pp. 1–12.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems, 2020, pp. 1877–1901.

[8] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Richly activated graph
convolutional network for robust skeleton-based action recognition,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 5, pp. 1915–1925, 2021.

[9] X. Shu, J. Yang, R. Yan, and Y. Song, “Expansion-squeeze-excitation
fusion network for elderly activity recognition,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 32, no. 8, pp. 5281–
5292, 2022.

[10] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in International Conference on Learning Representations,
2017, pp. 1–16.

[11] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architecture
search,” in International Conference on Learning Representations, 2019,
pp. 1–13.

[12] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2820–2828.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[13] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in International Conference
on Machine Learning, 2018, pp. 4092–4101.

[14] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations, 2020, pp. 1–15.

[15] Y. Guo, Y. Chen, Y. Zheng, P. Zhao, J. Chen, J. Huang, and M. Tan,
“Breaking the curse of space explosion: Towards efficient nas with
curriculum search,” in International Conference on Machine Learning,
2020, pp. 3822–3831.

[16] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei,
A. L. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in European Conference on Computer Vision, 2018, pp. 19–35.

[17] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, and R. Fonseca, “Alphax: exploring
neural architectures with deep neural networks and monte carlo tree
search,” arXiv preprint arXiv:1903.11059, 2019.

[18] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-Bench-101: Towards reproducible neural architecture search,” in
International Conference on Machine Learning, 2019, pp. 7105–7114.

[19] H. Wu and J. Zhou, “Iid-net: Image inpainting detection network via
neural architecture search and attention,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 32, no. 3, pp. 1172–1185, 2022.

[20] Z. Mei, P. Ye, H. Ye, B. Li, J. Guo, T. Chen, and W. Ouyang, “Automatic
loss function search for adversarial unsupervised domain adaptation,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 1,
no. 1, pp. 1–14, 2023.

[21] B. Guo, L. Xu, T. Chen, P. Ye, S. He, H. Liu, and J. Chen, “Latency-
aware neural architecture performance predictor with query-to-tier tech-
nique,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 1, no. 1, pp. 1–1, 2023.

[22] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in International Conference
on Learning Representations, 2017, pp. 1–18.

[23] Y. Guo, Y. Zheng, M. Tan, Q. Chen, Z. Li, J. Chen, P. Zhao, and
J. Huang, “Towards accurate and compact architectures via neural
architecture transformer,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[24] Y. Chen, Y. Guo, Q. Chen, M. Li, Y. Wang, W. Zeng, and M. Tan, “Con-
trastive neural architecture search with neural architecture comparators,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2021,
pp. 9502–9511.

[25] Z. Liu, Z. Shen, Y. Long, E. Xing, K.-T. Cheng, and C. Leichner,
“Data-free neural architecture search via recursive label calibration,” in
European Conference on Computer Vision, 2022, pp. 391–406.
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