
Published as a conference paper at ICLR 2024

TOWARDS ROBUST AND EFFICIENT CLOUD-EDGE
ELASTIC MODEL ADAPTATION VIA SELECTIVE
ENTROPY DISTILLATION

Yaofo Chen12∗, Shuaicheng Niu3∗, Yaowei Wang2∗, Shoukai Xu1, Hengjie Song1, Mingkui Tan145†

South China University of Technology1 Pengcheng Laboratory2 Nanyang Technological University3

Key Laboratory of Big Data and Intelligent Robot, Ministry of Education4 Pazhou Laboratory5

chenyaofo@gmail.com; mingkuitan@scut.edu.cn

ABSTRACT

The conventional deep learning paradigm often involves training a deep model
on a server and then deploying the model or its distilled ones to resource-limited
edge devices. Usually, the models shall remain fixed once deployed (at least for
some period) due to the potential high cost of model adaptation for both the server
and edge sides. However, in many real-world scenarios, the test environments
may change dynamically (known as distribution shifts), which often results in de-
graded performance. Thus, one has to adapt the edge models promptly to attain
promising performance. Moreover, with the increasing data collected at the edge,
this paradigm also fails to further adapt the cloud model for better performance.
To address these, we encounter two primary challenges: 1) the edge model has
limited computation power and may only support forward propagation; 2) the
data transmission budget between cloud and edge devices is limited in latency-
sensitive scenarios. In this paper, we establish a Cloud-Edge Elastic Model Adap-
tation (CEMA) paradigm in which the edge models only need to perform forward
propagation and the edge models can be adapted online. In our CEMA, to reduce
the communication burden, we devise two criteria to exclude unnecessary samples
from uploading to the cloud, i.e., dynamic unreliable and low-informative sample
exclusion. Based on the uploaded samples, we update and distribute the affine pa-
rameters of normalization layers by distilling from the stronger foundation model
to the edge model with a sample replay strategy. Extensive experimental results
on ImageNet-C and ImageNet-R verify the effectiveness of our CEMA.

1 INTRODUCTION

Deep neural networks (DNNs) have witnessed remarkable breakthroughs in a broad spectrum of
applications from computer vision (He et al., 2016; Dosovitskiy et al., 2021) to natural language
processing (Radford et al., 2018; Brown et al., 2020). In real-world applications, the traditional
deployment pipeline of DNNs is as follows: 1) training a large/foundation model on a cloud server
and 2) distilling/compressing the large/foundation model into a smaller model to be deployed in
edge devices for delay-sensitive applications. This pipeline has gained great success when test
samples share the same distribution as the training ones. However, in real-world edge devices,
the environment may dynamically change and the distributions of test samples are different from
training ones. Such distribution shifts often result from natural variations or corruptions, such as
changes in lighting and sensor degradation (Hendrycks & Dietterich, 2019; Koh et al., 2021). In this
case, models may exhibit significant performance drop (Wang et al., 2021; Zhang et al., 2022a).

To handle the distribution shift, previous methods seek to update the edge model, which can be
roughly categorized into two groups: i) Offline generalization methods are executed on the cloud
and then distribute updated models to the edge devices. Specifically, unsupervised domain adap-
tation methods (Zhang et al., 2020; Liang et al., 2020; Qiu et al., 2021; Lin et al., 2022) perform
model adaptation on collected test data in an offline manner. Domain generalization methods (Li

∗Equal contribution. †Corresponding author.

1

Published as a conference paper at ICLR 2024

Test Sample

Edge Model

Distribute Parameters

Upload Scenario Samples Edge

Edge Model

Cloud

Foundation
Model

Model Adaptation

Guided

Local Edge TTA

Limited
Resources

Test Sample Predictions

Edge
Model

Edge

Massive
Resources

Figure 1: Comparisons between the conventional Test-time Adaptation (TTA) (left) and our Cloud-
Edge Elastic Model Adaptation (right). The conventional one locally performs adaptation only in
the edge with limited resources. In contrast, our CEMA conducts model adaptation more efficiently
in the edge, which offloads the heavy adaptation workloads to the cloud with massive resources.

et al., 2018; Dou et al., 2019) pre-anticipate the possible test shifts at the training time, in which
the possible shifts can be simulated by a meta-learning scheme. However, they may yield inferior
performance since it is hard to pre-anticipate all unknown shifts at training time. ii) Online gener-
alization methods directly learn the shifts by adapting the model with test data. Recently, test-time
training (Sun et al., 2020; Bartler et al., 2022) and fully test-time adaptation (TTA) methods (Wang
et al., 2021; Niu et al., 2022; 2023) are newly devised to adapt a model to the test domain in an online
manner, which are more practical in real-world applications. However, they may be computationally
heavy to perform back-propagation, which may be unaffordable in resource-limited edge devices.

Besides, the foundation model in the cloud also should be continuously updated using the test sam-
ples in the edges. To address the above issues, one can leverage both the cloud and the edge by
uploading all the test samples to the cloud for adaptation of both the foundation and edge models.
However, it is still very challenging: 1) The data communication burden between the cloud and
edges may be heavy. Since the communication overhead is mainly affected by the number of up-
loaded samples. It not only decreases the adaptation efficiency in the cloud but also consumes the
limited bandwidth in the cloud-edge system. 2) How to exploit the foundation model to enhance
the performance of the edge model on distribution-shift test data is an open question. Typically, the
cloud has much richer computational resources and budgets than edges. In this case, the cloud is
able to support heavier computation and leverage more complex and stronger models for adaptation.

In this paper, we propose a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm that executes
dynamic model adaptation in a cloud-edge collaborative way instead of inference with the fixed
model. As shown in Figure 1, we delegate all adaptation workloads to the cloud and thus only
require vanilla inference in edges. To reduce communication overhead, we exclude two types of
samples from uploading to the cloud: 1) unreliable samples with high entropy identified by a dy-
namic entropy thresholding scheme; 2) low-informative samples with low entropy identified by an
unchanged thresholding scheme. Based on this, our CEMA greatly reduces the communication bur-
den. To leverage rich knowledge in the foundation model, we use it to guide the edge model via
knowledge distillation for adaptation. To improve the data utilization efficiency of uploaded sam-
ples, we devise a replay buffer to store and reuse these samples. We distill the foundation model to
the edge model based on both the newly uploaded samples and samples from the replay buffer. In
this way, our CEMA achieves better performance than the vanilla adaptation.

Main novelty and contributions: 1) We establish a Cloud-Edge Elastic Model Adaptation (CEMA)
paradigm designed for efficient collaborative model adaptation. Our CEMA is a general paradigm
that is applicable to online adapt edge models to new dynamically changing environments. 2) We
improve the adaptation performance of the edge model by performing a replay-based entropy distil-
lation, which minimizes prediction entropy and the KL divergence between the edge model and the
foundation model using a sample replay strategy. 3) We reduce communication costs by devising
entropy-based criteria for excluding unreliable and low-informative samples from being uploaded.
Experimental results show CEMA lowers 60% communication cost than SOTAs on ImageNet-C.

2 CLOUD-EDGE COMMUNICATION-EFFICIENT MODEL ADAPTATION

Problem statement. In this paper, we focus on how to efficiently improve adaptation performance
in the context of cloud-edge deployment under distribution-shifted scenarios. Let gw(·) denote a
model trained in a powerful cloud server on a set of training data. Instead of deploying the model
gw(·) in the cloud, we would infer gw(·) locally on a resource-limited edge device (e.g., a surveil-

2

Published as a conference paper at ICLR 2024

Uploaded Samples

Cloud (Massive Resources)

Edge Model

Foundation Model

Upload Samples (async) Distribute Parameters (async)

Entropy Loss

(Eqn. 5)

Distillation Loss

(Eqn. 6)

Edges (Limited Resources)

Test Sample Logits

…

Model
Online Samples

E
n
tr

o
p

y

Excluded Samples

Uploaded Samples

Remove Samples via

Remove Samples via

…

Replay Buffer

BN BN

BN

BN

Frozen Weights

Figure 2: An overview of our proposed CEMA. In edge: after inference, each edge asynchronously
uploads samples to the cloud by excluding unreliable ones (based on Shigh(x) in Eqn. (1)) and low-
informative ones (based on Slow(x) in Eqn. (3)). In cloud: 1) our CEMA improves the foundation
model fθ(·) with the uploaded samples via entropy minimization (Eqn. 5) and meanwhile stores
uploaded samples into a replay buffer. 2) With both the uploaded samples and the samples randomly
sampled from the replay buffer, CEMA adapts the edge model gw(·) with the guidance from the
foundation model fθ(·) via the knowledge distillation loss (Eqn. 6).

lance camera in an industrial park) for delay-sensitive applications. In the inference, gw(·) on edge
devices may encounter out-of-distribution test samples. These test samples are distribution-shifted
to the training ones due to natural variations or corruptions, such as lighting/weather changes and
unexpected noises resulting from sensor degradation. In this case, the model gw(·) may often be
sensitive to these distribution shifts, potentially leading to significant performance degradation.

To tackle the distribution-shift issue, many test-time adaptation (TTA) approaches (Sun et al., 2020;
Wang et al., 2021) have been proposed to improve the model adaptation performance through pa-
rameter updates. These methods become attractive since they do not require access to training data
and adapt the model on the unlabeled test data via entropy minimization in a self-supervised manner.
However, the applicability of these approaches to edge devices is limited due to computational re-
source constraints, such as memory limitations that hinder model updating. An alternative approach
is to employ these methods to adapt the model gw(·) in the cloud by centralizing the test data. Nev-
ertheless, this suffers from two challenges. 1) Uploading all test samples incurs significantly heavy
communication overhead. 2) Conventional TTA methods are typically designed for a single device
and may be hard to fully exploit the resources of both the cloud and the edges. In this study, we seek
to address the issues by developing an efficient and effective cloud-edge based adaptation method.

2.1 EFFICIENT ADAPTATION FOR ROBUSTNESS AND COMMUNICATION ENHANCEMENT

In this paper, we devise a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the
adaptation task is decomposed to the cloud and edges based on their computational resources and
budgets. The edge only requires performing a vanilla model inference, while the remaining adap-
tation workloads are offloaded to the cloud (see Figure 2). Then, our CEMA selectively uploads a
subset of samples, determined by our proposed entropy-based criteria (refer to Section 2.2), to the
cloud for adaptation. This selective sample uploading strategy significantly reduces the communica-
tion burden. Once the cloud adaptation process is complete, the edge model updates its parameters
from the cloud and then infers the next incoming test samples. Importantly, CEMA introduces no
extra computational cost in edges and is applicable to resource-constrained edge devices.

In the cloud, we seek to adapt the edge model with uploaded test samples. Specifically, we seek
to leverage a foundation model fθ(·) with stronger capability and more parameters to guide the
edge model for adaptation (refer to Section 2.3). Notably, the foundation model does not require
access to training data and updates through unsupervised entropy minimization. To maximize data
utilization for adaptation, we devise a replay buffer to store the uploaded samples. When transferring

3

Published as a conference paper at ICLR 2024

Algorithm 1 Adaptation process in edge.
Require: Test samples Dtest={xj}Mj=1, the edge

model gw(·), parameters B, Emax and Emin.
1: for a batch X={xb}Bb=1 in Dtest do
2: Calculate predictions ŷ for all x ∈ X via fΘ(·).
3: Calculate S(x) via Eqn. (4) with Emax and Emin.
4: Update the threshold Emax via Eqn. (2).
5: Upload samples {x|S(x)=1,x∈X} to cloud.
6: Update the parameters w̃ ∈ w from the cloud.
7: end for

Ensure: The predictions {ŷ}Mk=1 for all x ∈ Dtest.

Algorithm 2 Adaptation process in cloud.

Require: Test samples X̂={xn}Nn=1, the
foundation model fθ(·) and edge
model gw(·).

1: Update parameters θ̃ ∈ θ of the foun-
dation model fθ(·) via entropy mini-
mization (Eqn. 5) with X̂ .

2: Update parameters w̃ ∈ w of the edge
model gw(·) via knowledge distilla-
tion (Eqn. 6) with X .

3: Distribute the parameters w̃ to edge.

knowledge from the foundation model to the edge model via knowledge distillation, we exploit
both the newly uploaded samples and the samples from the replay buffer for higher data utilization
efficiency. This results in better performance of the edge model compared to vanilla adaptation. The
pseudo-code involved in the edge and cloud is presented in Algorithms 1 and 2, respectively.

2.2 SAMPLE FILTRATION FOR COMMUNICATION COST REDUCTION IN EDGE SIDE

To reduce the communication overhead between the cloud and edges, we propose a sample filtration
strategy that removes high and low entropy test samples from being uploaded to the cloud. A
recent study by Wang et al. (2021) proposes a model adaptation method that adapts on a batch of
test samples by conducting entropy minimization. Minimizing entropy penalizes decisions at high
densities in the data distribution to improve accuracy for distinct classes (Grandvalet & Bengio,
2004), which has proven to be a crucial constraint for domain adaptation (Saito et al., 2019; Roy
et al., 2019). Furthermore, Niu et al. (2022) has demonstrated that high entropy samples adversely
affect the adaptation performance when entropy minimization is employed. The reason may be
that the model adapts using the test samples without labels via entropy minimization, introducing
considerable uncertainty when dealing with high-entropy samples during the adaptation process.

However, this method only filters test samples based on a static and pre-determined threshold. It
suffers two limitations: 1) The entropy of samples tends to decrease along with the adaptation.
Therefore, only a part of the negatively impacting samples can be excluded. 2) It overlooks the fact
that adaptation with extremely low-entropy samples is unnecessary. To address the above issues, we
propose to 1) dynamically exclude the unreliable (high entropy) samples by adaptively adjusting the
threshold in accordance with the entropy of current samples. 2) exclude the low-informative (low
entropy) samples. We design the entropy-based filtration criteria as it is an information-theoretic
measure that represents uncertainty and information and has proven to be a simple yet effective
strategy (Settles, 2010; Margatina et al., 2021; Ren et al., 2022). To this end, we devise a binary
score S(x) to indicate whether a sample x should be uploaded. We only upload the test samples
with S(x)=1 and discard those with S(x)=0.

0k-10k 10k-20k 20k-30k 30k-40k 40k-50k
Online Test Samples

50%

60%

70%

80%

90%

100%

Pr
op

or
tio

n

Samples (E(x; w) > Emax) Samples (E(x; w) Emax)

Figure 3: Proportions of test samples with
E(x;w)>Emax (red) and E(x;w)≤Emax
(blue) during adaptation via entropy mini-
mization on ImageNet-C.

Dynamic identification on unreliable samples. Let
1{·}(·) denote an indicator function. Following (Niu
et al., 2022), we exploit a entropy threshold Emax to
filter out the high entropy test samples as follows

Shigh(x) = 1{E(x;w)<Emax}(x), (1)

where E(x;w) denotes the entropy of the prediction
gw(x) for the sample x. As we perform adaptation
through entropy minimization, the entropy of the test
samples is likely to decrease. Consequently, a fixed
threshold Emax would progressively exclude fewer
and fewer samples during the adaptation. To sub-
stantiate this, we perform an empirical study to re-
veal the proportions of the test samples whose en-
tropy is larger than a fixed Emax at different stages

4

Published as a conference paper at ICLR 2024

during the adaptation process. As shown in Figure 3, in the final stage, we filter out fewer samples
(indicated by the red bar) compared to the initial stage. This trend could be attributed to the predic-
tions becoming more certain (i.e., predictions with lower entropy) as the adaptation progresses.

In light of the aforementioned empirical study, it becomes feasible to filter out more high-entropy
samples by dynamically decreasing the Emax. To this end, we seek to lower Emax according to the
average entropy of the test samples after every adaptation batch. To be specific, in the adaptation
batch t, the entropy threshold Et

max can be calculated by

Et
max ← λ× Et−1

max ×
Et

avg

Et−1
avg

, (2)

where Et
avg denotes the average entropy of all test samples in past t batches, λ is a hyper-parameters.

Note that E0
avg can be obtained from the first batch of the test samples. Based on Eqn. (2), when the

average entropy becomes smaller, Emax would be descended accordingly. In this way, we exclude
more unreliable samples from uploading to the cloud, thereby enhancing communication efficiency.

Identification on low-informative samples. In addition to high entropy samples, test samples with
extremely low entropy are unnecessary for adaptation. Since they only contribute negligible gradient
while minimizing the entropy loss. Following the similar scheme above, we employ a threshold Emin
to discard samples with entropy lower than Emin. We do not adopt a dynamic variation strategy on
Emin since the threshold that determines whether a sample contributes negligible gradient does not
depend on the average entropy of current test samples. Formally, Slow(x) can be written as

Slow(x) = 1{E(x;θ)>Emin}(x). (3)

The overall binary score S(x) can be calculated by

S(x) = Shigh(x) · Slow(x). (4)

Note that the edge model only requires one regular forward propagation without the need for back-
ward propagation or gradient descent. Once the edge model gw(·) makes predictions for test sam-
ples, it asynchronously uploads the samples with S(x)=1 to the cloud using a background thread.
We emphasize that uploading samples does not block the edge from inferring on next incoming
samples. In other words, the processes of inference and uploading can be executed simultaneously.

2.3 REPLAY-BASED KNOWLEDGE DISTILLATION FOR ADAPTATION IN CLOUD SIDE

Recent studies have demonstrated that larger models with a great number of parameters often achieve
better performance than a small one on the out-of-distribution data (Hendrycks & Dietterich, 2019).
Compared with the vanilla adaptation, it is possible to further improve the edge model gw(·) in the
cloud by distillation from a high-performing foundation model fθ(·). Note that it is feasible and
practical that the foundation model has knowledge that covers all the test samples inferred by the
edge model (see results and analysis in Table 8). Since cloud server has much more sufficient com-
putational resources and budgets to support the heavier models. In this case, our proposed CEMA
would adopt a foundation model to enhance the adaptation performance, which takes advantage of
the rich computational resources of the cloud.

However, it is non-trivial to distill the foundation model fθ(·) to the edge model gw(·). Note that
vanilla distillation training requires a large number of samples (Chen et al., 2019; Yu et al., 2023).
The amount of accessible test samples is limited as we exclude unreliable and low-informative sam-
ples in the edge. To alleviate this issue, we devise a replay buffer B to store the uploaded samples
inspired by (Mnih et al., 2013). In each distillation step, we first update the foundation model
fθ(·) via unsupervised entropy minimization in an unsupervised manner on the uploaded samples.
Through this adaptation process, the foundation model acquires additional knowledge of the cur-
rent test data. Then, we boost the edge model gw(·) via the knowledge distillation guided by the
foundation model on both the uploaded samples and the samples from the replay buffer.

Entropy minimization for foundation model adaptation. Upon receiving the batch of uploaded
test samples X̂={xi}Ni=1, we first put them into the replay buffer B=B ∪ X̂ . Note that the capacity

5

Published as a conference paper at ICLR 2024

of the buffer is limited (see analysis and ablations in Table 16). We update the buffer with the newly
uploaded test samples in a first-in and first-out manner. Subsequently, we update the foundation
model over the batch X̂ . Adaptation with a batch not only avoids a trivial solution (i.e., assigning all
probability to the most probable class (Wang et al., 2021)) but also improves the parallel efficiency
in the cloud server. Formally, we adapt fθ(·) by minimizing the weighted entropy loss LENT(fθ(x))

min
θ̃

H(x)
∑
y∈C

fθ(y|x) log fθ(y|x), (5)

where H(x)=1/ exp (E(x; θ)−Emax) and C denotes the model output space. In Eqn. (5), we opti-
mize the loss weighted by H(x) following (Niu et al., 2022) since we seek to encourage the model
to focus on the low-entropy test samples during adaptation. In the back-propagation process, it is
worth noting that the gradient is not propagated through H(x).

For efficient adaptation, we only update the affine parameters of normalization layers θ̃∈θ while
keeping the remaining layers fixed. The advantages are three folds: 1) This model updating strategy
is efficient since it requires less memory footprint and computational resources. 2) Compared with
distributing all the parameters to the edge, our CEMA only needs to transfer BN parameters and
lowers downloading overhead (e.g., reduce 99.91% parameters distributing burden in ResNet-18). 3)
The model may preserve the previous knowledge since most parameters remain unchanged, leading
to better adaptation stability and performance (see results in Table 17).

Knowledge distillation with replay buffer for edge model adaptation. With the updated founda-
tion model, we seek to adapt the edge model gw(·) on both X̂ and a set of test samples randomly
sampled from the replay buffer B. Specifically, we align the predictions between the logits fθ(·) and
gw(·) via Kullback–Leibler (KL) divergence LKL. In addition, we adapt gw(·) via a cross-entropy
loss LCE, in which the pseudo labels ŷ are generated by the foundation model. Note that ŷ can be
calculated by ŷ = argmaxy∈C(fθ(y|x)). Formally, we optimize gw(·) by employing both entropy
minimization and knowledge distillation as follows,

min
w̃

H(x)[αLKL(gw(x), fθ(x)) + βLCE(gw(x), ŷ) + LENT(gw(x)))], (6)

where α and β are factors for balancing the losses. we use the KL divergence to align the prediction
distribution of the foundation and edge models, and the CE loss to align the decision boundaries.
These two kinds of losses make the edge model learn the knowledge in complementary manners
from the foundation model. The combination of both losses outperforms the adoption of either one
in isolation (See results and analyses in Table 12).

In edge model adaptation, we still only update the affine parameters of normalization layers w̃∈w.
After distilled adaptation of the edge model fw(·), we distribute the parameters w̃ to edge devices to
update fw(·). In particular, once the cloud has completed adaptation, we can perform the reception
of parameters from the cloud in the background, typically via a separate thread to avoid blocking
the inference process. Upon full reception of the parameters, we would update the parameters of the
edge model at the beginning of the next inference iteration.

3 EXPERIMENTS

In the following, we provide the details of the used datasets and implementation, more details are
put in the supplementary materials. The code is available at https://github.com/chenyaofo/CEMA.

Datasets and models. We evaluate our method and considered methods on ImageNet-C (Hendrycks
& Dietterich, 2019). which is a distribution shift dataset by applying 4 main category corruption (i.e.,
noise, blur, weather, and digital), with a total of 15 diverse corruption types, to the ImageNet valida-
tion set. Each corruption has 5 different severity levels (i.e., from level 1 to 5), in which the higher
severity level indicates the more severe distribution shift. We also verify our CEMA on ImageNet-
R (Hendrycks et al., 2021), which contains 30,000 images with various artistic renditions of 200
ImageNet classes collected from Flickr. We adopt ResNet101 (He et al., 2016) as the foundation
model and ResNet18 as the edge model in the main experiments. We explore more foundation
models and edge models in the ablation studies (see results in Tables 13 and 14).

Implementation details. We set the entropy thresholds Emax=0.4 × lnC as the initialized value
following (Niu et al., 2022) and Emin=0.02 × lnC, where C denotes the number of classes. Then

6

https://github.com/chenyaofo/CEMA

Published as a conference paper at ICLR 2024

Table 1: Comparisons with state-of-the-art methods on ImageNet-C (severity level 3 and 5) re-
garding Accuracy (%). We adopt Resnet101 as the foundation model and ResNet18 as the edge
model. † denotes the TTA method that does not require any backward propagation and can be locally
executed in edge devices. Note that our CEMA requires uploading fewer samples on average with
severity levels 3 (19.1k vs. 26.1k) and 5 (14.4k vs. 18.8k) than ETA.

Noise Blur Weather Digital
Severity Level=3 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet18 (baseline) 21.6 19.9 18.7 29.9 15.8 28.7 27.6 27.6 23.8 35.5 62.7 38.1 51.8 41.6 53.0 33.1
• BN Adaptation† 42.3 39.8 40.0 37.5 31.4 45.1 44.3 40.8 36.2 53.9 65.0 58.2 60.2 58.0 57.7 47.4
• ONDA† 40.0 38.9 37.5 29.5 27.5 43.8 43.9 40.2 35.2 54.6 65.1 56.1 59.7 58.6 57.6 45.9
• LAME† 20.6 18.9 17.2 29.5 14.7 28.3 26.9 26.8 23.2 34.9 62.4 37.5 51.3 41.1 52.5 32.4
• PL 48.1 48.0 46.1 41.1 39.7 51.3 49.9 47.3 39.8 58.6 64.9 59.2 62.5 60.8 59.4 51.8
• Tent 47.2 47.1 45.1 40.0 38.2 50.4 49.4 46.7 40.1 58.1 64.9 59.0 62.5 60.5 59.2 51.2
• CoTTA 42.0 40.7 39.8 30.3 30.1 46.3 46.1 41.9 36.5 56.2 64.9 58.0 60.2 59.3 58.1 47.4
• ETA 50.1 50.2 48.6 44.0 42.7 52.9 51.4 49.9 43.5 59.5 65.2 60.9 62.9 61.6 59.9 53.5
• CEMA (Ours) 51.1 51.2 49.8 45.2 44.1 53.7 52.0 50.8 44.2 60.1 65.0 61.1 62.9 61.6 59.8 54.2

Severity Level=5 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet18 (baseline) 1.5 2.3 1.5 11.4 8.7 11.1 17.6 10.6 16.2 14.0 51.5 3.4 16.5 23.3 30.7 14.7
• BN Adaptation† 16.6 16.2 17.3 18.6 18.2 25.9 34.7 28.4 29.8 41.2 58.5 22.2 40.1 45.3 38.0 30.1
• ONDA† 13.7 15.0 14.1 12.3 13.2 23.7 34.2 29.4 28.6 40.9 58.5 12.3 39.3 44.6 37.5 27.8
• LAME† 0.9 1.1 0.6 11.2 8.2 10.8 17.0 8.7 15.6 12.4 51.1 3.3 14.9 22.5 30.1 13.9
• PL 24.8 26.8 24.6 20.3 21.3 33.6 41.8 39.0 32.4 49.9 59.5 11.4 47.9 51.5 47.0 35.4
• Tent 22.8 25.0 23.2 20.1 21.1 32.4 41.0 37.8 33.5 48.9 59.3 18.0 46.9 50.6 45.9 35.1
• CoTTA 15.2 16.2 15.7 11.8 14.9 26.9 36.9 31.2 29.9 43.6 59.2 17.0 40.9 47.2 39.3 29.7
• ETA 26.8 29.7 27.6 22.6 22.7 37.1 44.0 42.4 37.6 51.6 60.1 26.1 49.8 53.3 48.5 38.7
• CEMA (Ours) 29.8 32.2 30.3 25.3 26.8 39.3 45.3 43.7 38.7 52.8 60.1 32.9 50.8 54.0 49.3 40.8

the threshold Emax decreases based on Eqn. (2) with λ=1.0. For the adaptation of the foundation
and edge model, we use both an SGD optimizer with a learning rate of 0.00025 and a momentum
of 0.9. For the adaptation of the edge model, we set the batch size to 128, in which 32 samples are
newly uploaded and the remaining 96 samples are randomly sampled from the replay buffer. The
hyper-parameter α and β are both set to 3.

Compared methods. We compare our methods with the following state-of-the-art TTA methods,
including BN Adaptation (Schneider et al., 2020), ONDA (Mancini et al., 2018), LAME (Boudiaf
et al., 2022), Pseudo Label (PL) (Lee et al., 2013), Tent (Wang et al., 2021), CoTTA (Wang et al.,
2022) and ETA (Niu et al., 2022). In the experiments, we assume the edge devices only have limited
resources and thus are unable to perform backpropagation. All workloads in the above TTA methods
invoked in backpropagation would be executed in the cloud by uploading test samples. In this way,
we can compare the amount of data transmission between our method and the counterparts.

3.1 PERFORMANCE COMPARISONS ON IMAGENET-C

We compared our proposed CEMA with the considered methods in Table 1 in ImageNet-
C (Hendrycks & Dietterich, 2019) with the severity levels 3 and 5. We adopt a CNN-based model
ResNet101 as the foundation model and ResNet18 as the edge model in this experiment. We put
more experimental results with the severity levels 1, 2, and 4 as well as the results on transformer-
based models in the supplementary due to the page limitation. From the results, our CEMA achieves
the highest accuracy in most 15 different corruption types and the best average accuracy (e.g., 40.8%
with the severity level 5). To be specific, CEMA outperforms Tent (29.8% vs. 22.8%) and ETA
(29.8% vs. 26.8%) on the corruption Gaussian noise with the severity level 5. The reasons are
twofold: 1) the proposed filtration strategy removes more harmful test samples; 2) our replay-based
distillation scheme transfers distribution knowledge to the edge model. The results verify the effec-
tiveness of the proposed sample filtration strategy and distilled adaptation method.

In Figure 4, we compare the average number of uploaded samples over 15 corruption types of our
CEMA and the considered methods with ResNet18 as the edge model. Note that the compared
methods PL, Tent and CoTTA need to upload the whole test samples (50k samples, 100%) to the
cloud for adaptation. These methods introduce great communication overhead between the cloud
and edges, which is inefficient in the context of cloud edge model deployment. ETA excludes
some test samples with high prediction entropy but still requires uploading 26.1k (52%) and 19.1k
(38%) samples in severity levels 3 and 5, respectively. With the proposed dynamic sample filtration

7

Published as a conference paper at ICLR 2024

Table 2: Comparisons with state-of-the-art
methods on ImageNet-R benchmark. We
adopt ResNet101 as the foundation model and
ResNet18 as the edge model. † denotes the TTA
method that does not require any backward prop-
agation and can be executed in edge devices,
which does not require uploading test samples.

Model Acc. (%) #Uploaded samples

ResNet18 (baseline) 20.4 –
• BN Adapt.† 22.8 –
• ONDA† 22.7 –
• LAME† 20.2 –
• PL 23.8 30,000 (100%)
• Tent 23.6 30,000 (100%)
• ETA 26.2 7,457 (25%)
• CoTTA 23.2 30,000 (100%)
• CEMA (Ours) 27.9 5,944 (20%)

Table 3: Comparisons with Tent and ETA with a
mixture of 15 corruption types on ImageNet-C.

Model Accuracy (%) #Uploaded samples

ResNet18 (baseline) 33.1 –
• Tent 30.5 750k (100%)
• ETA 44.5 384k (51%)
• CEMA (Ours) 45.6 286k (38%)

Table 4: Effect of sample filtration strategy.
Method Level 3 Level 5

Acc. (%) #Upload Acc. (%) #Upload

Shigh(x) w/ Fixed Emax 51.2 25,325 30.0 15,473
+ Dynamic Emax 51.1 20,976 29.9 10,081
+ Slow(x) 51.1 17,479 29.8 9,889

Table 5: Effect of the replay buffer.
Replay Buffer Level 3 Level 5

Acc. (%) #Upload Acc. (%) #Upload

× 47.4 17,654 25.0 9,084
✓ 51.1 17,479 29.8 9,889

Level 3 Level 5
0

10k
20k
30k
40k
50k

Av

g.
 U

pl
oa

de
d

Sa
m

pl
es

50.0k 50.0k

26.1k
18.8k19.1k

14.4k

Tent/PL/CoTTA ETA CETTA (ours)

Figure 4: Comparisons of the
average number of uploaded
test samples on ImageNet-C
with the severity levels 3 and 5.

0

10K

20k

30K

#U
pl

oa
de

d
Sa

m
pl

es
0.6 0.7 0.8 0.9 1.0 1.1

48

49

50

51

A
cc

ur
ac

y
(%

)

Figure 5: Effect of λ in
Eqn. (2) with ResNet18 as edge
model on ImageNet-C (Gaus-
sian noise, severity level 3).

0

10K

20k

30K

#U
pl

oa
de

d
Sa

m
pl

es

0.01 0.02 0.03 0.04 0.05 0.06
48

49

50

51

A
cc

ur
ac

y
(%

)

Figure 6: Effect of Emin in
Eqn. (3) with ResNet18 as edge
model on ImageNet-C (Gaus-
sian noise, severity level 3).

strategy, our CEMA further reduces the number of uploaded samples to 18.8k (37%) and 14.4k
(29%) in severity levels 3 and 5. Compared with ETA, we remove more high-entropy samples with
a dynamic threshold and further exclude low-entropy samples. In this case, our proposed CEMA
only needs to upload fewer samples to the cloud for adaptation, which demonstrates the superiority
of our methods over existing methods in terms of the amount of data transmission.

3.2 PERFORMANCE COMPARISONS ON IMAGENET-R

In Table 2, we report the results of our CEMA and considered methods on a realistic out-of-
distribution dataset ImageNet-R. This benchmark dataset is collected from Flickr instead of gen-
erated by some corruption algorithms (i.e., as ImageNet-C done) and filtered by Amazon MTurk
annotators according to the class names in the original ImageNet. From the results, our CEMA
achieves 27.9% accuracy on ImageNet-R (+4.1% over Tent, +1.7% over the best counterpart ETA).
As for the number of uploaded test samples, our CEMA only requires 5944 (20%) samples, which
is lower than ETA (7457, 25%) and much lower than Tent, PL and CoTTA (30,000, 100%). These
results are consistent with those on ImageNet-C that our proposed CEMA yields the highest robust
accuracy with the fewest uploaded samples. The results further demonstrate the effectiveness and
potential of our method while applied to realistic test samples in real-world applications.

3.3 FURTHER EXPERIMENTS

In ablation studies, we consider two representative severity levels (i.e., 3 and 5). Severity levels 3 and
5 represent the medium-difficulty distribution shift and the most challenging distribution shift, re-
spectively. By adopting these two levels, we effectively assess the performance of various adaptation
algorithms. Moreover, the hyper-parameters derived from these levels demonstrate their adaptability

8

Published as a conference paper at ICLR 2024

and suitability for addressing other severity levels as well. For a similar consideration, the settings
are widely adopted by Tent (Wang et al., 2021) and ETA(Niu et al., 2022).

Due to the page limitation, We put more ablations in the supplementary materials, including the
effects of 1) hyperparameters Emax, α and β, 2) components in distillation loss (Eqn. (6)), 3) different
foundation models, 4) different edge models, 5) different filtration strategies 6) replay buffer size,
7) different parameters updating schemes and 8) different parameters distribution intervals.

Comparisons under mixed-and-shifted distributions. We evaluate our CEMA on mixed
ImageNet-C in severity level 3 that consists of 15 different corruption types/distribution shifts (750k
images in total). Note that it is common for the edge model to encounter test samples with mixed dis-
tribution shifts in practice. In Table 3, compared with Tent and ETA, our CEMA outperforms them
in both the accuracy (+15.1% over Tent and +1.1% over ETA) and the number of uploaded samples
(-62% than Tent, -13% than ETA). The results show the effectiveness of CEMA for applications in
complex scenarios with out-of-distribution samples.

Effect of λ in Eqn. (2). To investigate the effect of λ in Eqn. (2), we perform more experiments
with different λ ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1}. From Figure 5, when λ becomes larger, our CEMA
would remove fewer test samples and upload more samples to the cloud, and the robust accuracy
improves since we transfer the more contributed samples to the cloud for adaptation. The robust
accuracy is highest (51.1%) when λ=1.0 and keep unchanged while λ>1.0. Considering a larger λ
leads to more communication burden, we select λ=1.0 for the efficiency-performance trade-off and
fix λ to 1.0 for all other experiments. Experimental results in Tables 1, and 2 demonstrate that this
fixed λ works well, indicating that the λ in our CEMA is not sensitive to different datasets.

Effect of Emin in Eqn. (3). We evaluate our CEMA with different Emin, selected from {0.01, 0.02,
0.03, 0.04, 0.05, 0.06}. Note that the larger Emin is, the more low-entropy samples are excluded.
In this case, the out-of-distribution performance would decrease since we may remove some con-
tributed samples during adaptation. From Figure 6, the accuracy drops when Emin is larger than 0.02.
Therefore, we set the entropy threshold Emin to 0.02 across various datasets, including ImageNet-C
(15 corruption types and 5 severity levels) and ImageNet-R. Extensive experiments show that our
CEMA works well with the chosen hyperparameters on different datasets and various severity levels.

Effect of components in sample filtration strategy. We perform an ablation experiment in Table 4
to verify the components in the proposed sample filtration strategy. Compared with the baseline that
removes test samples based on Shigh(x) with fixed Emax (the same as ETA), introducing dynamic
Emax in Eqn. (2) achieves comparable accuracy (51.1% vs. 51.2%) in severity level 3 with fewer up-
loaded samples (20,976 vs. 25,325). When further removing low-entropy samples based on Slow(x)
in Eqn. (3), the number of uploaded samples further decreases (e.g., 25,325→ 17,479). The results
demonstrate the effectiveness of our proposed sample filtration strategy. We further demonstrate the
superiority of our filtration strategy over the random uploading strategy in Table 15.

Effect of the replay buffer. In Table 5, we report the performance of our CEMA on ImageNet-C
(Gaussian noise, severity level 3) with/without the replay buffer. Note that the replay buffer is able
to provide more samples for distillation and boost the data utilization efficiency in our cloud edge
adaptation. With the replay buffer, our CEMA achieves much higher accuracy (51.1% vs. 47.4%)
on ImageNet-C (Gaussian noise, severity level 3). The reason is that we reuse samples from the
replay buffer for knowledge distillation. This leads to more sufficient model updates when the
foundation model transfers the knowledge to the edge model. The experimental results demonstrate
the effectiveness of the proposed replay buffer in knowledge distillation.

4 CONCLUSION

In this paper, we devise a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm that improves
the model adaptation performance by leveraging both the cloud server and edge devices. In the
adaptation, we highlight that our CEMA does not introduce any extra computational cost in the edge
devices. Specifically, we devise a sample filtration strategy to exclude unnecessary samples from the
cloud for adaptation. It reduces the data transmission overhead between the cloud and edge and thus
improves the adaptation efficiency. Besides, we adopt a powerful foundation model to guide the edge
model for adaptation via the proposed replay-based knowledge distillation. Extensive experimental
results on several benchmark datasets demonstrate the effectiveness of our CEMA.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was partially supported by National Natural Science Foundation of China (NSFC)
61836003 (key project), National Natural Science Foundation of China (NSFC) 62072190, the Ma-
jor Key Project of PCL PCL2023A08 and TCL Science and Technology Innovation Fund.

REPRODUCIBILITY STATEMENT

In this work, we implement our CEMA with different models on ImageNet-C and ImageNet-R
datasets. Reproducing all the results in our method depends on the following three aspects:

1. DATASET. The second paragraph of Section 3 and Appendix C.1 provide the details of the
adopted dataset and the download url.

2. MODELS. All adopted models (with the pre-trained weights) for test-time adaptation are publicly
available. The download url is provided in Appendix C.2.

3. PROTOCOLS OF EACH METHOD. Appendix C.2 provides the implementation details of our
CEMA and compared methods. The source code of our CEMA has been made publicly available.

REFERENCES

Aibek Alanov, Vadim Titov, and Dmitry P Vetrov. Hyperdomainnet: Universal domain adaptation
for generative adversarial networks. In Advances in Neural Information Processing Systems, pp.
29414–29426, 2022.

Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, and Bin Yang. Mt3: Meta test-
time training for self-supervised test-time adaption. In International Conference on Artificial
Intelligence and Statistics, pp. 3080–3090, 2022.

William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of ensembles
for active learning in image classification. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9368–9377, 2018.

Prashant Bhat, Elahe Arani, and Bahram Zonooz. Distill on the go: Online knowledge distillation in
self-supervised learning. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
2678–2687, 2021.

Malik Boudiaf, Romain Müller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
time adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 8334–
8343, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems, pp. 1877–1901, 2020.

Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and Chun Chen. Online knowledge distillation
with diverse peers. In AAAI Conference on Artificial Intelligence, pp. 3430–3437, 2020a.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. In IEEE International Conference
on Computer Vision, pp. 3513–3521, 2019.

Liqun Chen, Dong Wang, Zhe Gan, Jingjing Liu, Ricardo Henao, and Lawrence Carin. Wasser-
stein contrastive representation distillation. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 16296–16305, 2021a.

10

Published as a conference paper at ICLR 2024

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 5008–5017, 2021b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607, 2020b.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez, and Ion Stoica.
Clipper: A low-latency online prediction serving system. In USENIX Symposium on Networked
Systems Design and Implementation, pp. 613–627, 2017.

Zeshuai Deng, Zhuokun Chen, Shuaicheng Niu, Thomas Li, Bohan Zhuang, and Mingkui Tan. Effi-
cient test-time adaptation for super-resolution with second-order degradation and reconstruction.
In Advances in Neural Information Processing Systems, volume 36, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain general-
ization via model-agnostic learning of semantic features. In Advances in Neural Information
Processing Systems, pp. 6447–6458, 2019.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pp. 1183–1192, 2017.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
coders. volume 35, pp. 29374–29385, 2022.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Ad-
vances in Neural Information Processing Systems, pp. 529–536, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8340–8349, 2021.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv, abs/1503.02531, 2015.

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv, abs/1112.5745, 2011.

Xuefeng Hu, Gokhan Uzunbas, Sirius Chen, Rui Wang, Ashish Shah, Ram Nevatia, and Ser-
Nam Lim. Mixnorm: Test-time adaptation through online normalization estimation. arXiv,
abs/2110.11478, 2021.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. In Advances in Neural Information Processing Systems, pp. 1945–1953, 2017.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic do-
main generalization. Advances in Neural Information Processing Systems, 34:2427–2440, 2021.

11

Published as a conference paper at ICLR 2024

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhen-Zhong Lan, Shiguang Shan, and Alexander G. Hauptmann.
Self-paced learning with diversity. In Advances in Neural Information Processing Systems, pp.
2078–2086, 2014.

Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, and Gaurav Aggarwal. Sita: Single image
test-time adaptation. arXiv, abs/2112.02355, 2021.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664, 2021.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pp. 1189–1197, 2010.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In International Conference on Machine Learning Workshop, volume 3,
pp. 896, 2013.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In AAAI Conference on Artificial Intelligence, pp. 3490–3497, 2018.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028–6039, 2020.

Hongbin Lin, Yifan Zhang, Zhen Qiu, Shuaicheng Niu, Chuang Gan, Yanxia Liu, and Mingkui Tan.
Prototype-guided continual adaptation for class-incremental unsupervised domain adaptation. In
European Conference on Computer Vision, pp. 351–368. Springer, 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. arXiv, abs/1405.0312, 2014.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In Advances in
Neural Information Processing Systems, volume 34, 2021.

Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang Duan.
Knowledge distillation via instance relationship graph. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7096–7104, 2019.

Zhijian Liu, Zhanghao Wu, Chuang Gan, Ligeng Zhu, and Song Han. Datamix: Efficient privacy-
preserving edge-cloud inference. In European Conference on Computer Vision, pp. 578–595,
2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
11966–11976, 2022.

Zheqi Lv, Wenqiao Zhang, Shengyu Zhang, Kun Kuang, Feng Wang, Yongwei Wang, Zhengyu
Chen, Tao Shen, Hongxia Yang, Beng Chin Ooi, and Fei Wu. Duet: A tuning-free device-cloud
collaborative parameters generation framework for efficient device model generalization. In Pro-
ceedings of the ACM Web Conference, pp. 3077–3085, 2023.

Massimiliano Mancini, Hakan Karaoguz, Elisa Ricci, Patric Jensfelt, and Barbara Caputo. Kitting in
the wild through online domain adaptation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1103–1109, 2018.

Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. In Proceedings of Conference on Empirical Methods in Natural
Language Processing, pp. 650–663, 2021.

12

Published as a conference paper at ICLR 2024

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. arXiv,
abs/1312.5602, 2013.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. arXiv, abs/2006.10963, 2020.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In AAAI Conference on Artificial Intelligence, pp. 2901–
2907, 2015.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International Conference on
Machine Learning, pp. 16888–16905, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In International Conference on
Learning Representations, 2023.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke. Tensorflow-serving: Flexible, high-performance
ml serving. arXiv, abs/1712.06139, 2017.

Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, and
Hamid R Rabiee. Deep private-feature extraction. IEEE Transactions on Knowledge and Data
Engineering, 32(1):54–66, 2018.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3967–3976, 2019.

Jizong Peng, Ping Wang, Christian Desrosiers, and Marco Pedersoli. Self-paced contrastive learn-
ing for semi-supervised medical image segmentation with meta-labels. In Advances in Neural
Information Processing Systems, pp. 16686–16699, 2021.

Viraj Prabhu, Shivam Khare, Deeksha Kartik, and Judy Hoffman. Sentry: Selective entropy opti-
mization via committee consistency for unsupervised domain adaptation. In IEEE International
Conference on Computer Vision, pp. 8558–8567, 2021.

Biao Qian, Yang Wang, Hongzhi Yin, Richang Hong, and Meng Wang. Switchable online knowl-
edge distillation. In European Conference on Computer Vision, volume 13671, pp. 449–466,
2022.

Zhen Qiu, Yifan Zhang, Hongbin Lin, Shuaicheng Niu, Yanxia Liu, Qing Du, and Mingkui Tan.
Source-free domain adaptation via avatar prototype generation and adaptation. In International
Joint Conference on Artificial Intelligence, pp. 2921–2927, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. In International Conference on Learning Representations,
2018.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 779–788, 2016.

Pei Ren, Xiuquan Qiao, Yakun Huang, Ling Liu, Calton Pu, and Schahram Dustdar. Fine-grained
elastic partitioning for distributed dnn towards mobile web ar services in the 5g era. IEEE Trans-
actions on Services Computing, 2021.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM Computing Surveys, 54(9):180:1–180:40,
2022.

13

Published as a conference paper at ICLR 2024

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference on Learning
Representations, 2015.

Subhankar Roy, Aliaksandr Siarohin, Enver Sangineto, Samuel Rota Bulò, Nicu Sebe, and Elisa
Ricci. Unsupervised domain adaptation using feature-whitening and consensus loss. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 9471–9480, 2019.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
domain adaptation via minimax entropy. In IEEE International Conference on Computer Vision,
pp. 8049–8057, 2019.

Enver Sangineto, Moin Nabi, Dubravko Culibrk, and Nicu Sebe. Self paced deep learning for weakly
supervised object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41
(3):712–725, 2019.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
Advances in Neural Information Processing Systems, volume 33, pp. 11539–11551, 2020.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. University of Wisconsin, 52, 07 2010.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International Conference
on Machine Learning, pp. 9229–9248, 2020.

Evgenii Tsymbalov, Maxim Panov, and Alexander Shapeev. Dropout-based active learning for re-
gression. In Analysis of Images, Social Networks and Texts, pp. 247–258, 2018.

Han Vanholder. Efficient inference with tensorrt. In GPU Technology Conference, volume 1, pp. 2,
2016.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2021.

Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, and Philip S Yu. Not just privacy:
Improving performance of private deep learning in mobile cloud. In Proceedings of SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2407–2416, 2018.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7191–7201, 2022.

Zhiquan Wen, Shuaicheng Niu, Ge Li, Qingyao Wu, Mingkui Tan, and Qi Wu. Test-time model
adaptation for visual question answering with debiased self-supervisions. IEEE Transactions on
Multimedia, 2023.

Min Xue, Huaming Wu, Ruidong Li, Minxian Xu, and Pengfei Jiao. Eosdnn: An efficient offloading
scheme for dnn inference acceleration in local-edge-cloud collaborative environments. IEEE
Transactions on Green Communications and Networking, 6(1):248–264, 2021.

Zhendong Yang, Zhe Li, Yuan Gong, Tianke Zhang, Shanshan Lao, Chun Yuan, and Yu Li. Re-
thinking knowledge distillation via cross-entropy. arXiv, abs/2208.10139, 2022a.

Zhendong Yang, Zhe Li, Mingqi Shao, Dachuan Shi, Zehuan Yuan, and Chun Yuan. Masked gener-
ative distillation. In European Conference on Computer Vision, volume 13671, pp. 53–69, 2022b.

Han-Jia Ye, Su Lu, and De-Chuan Zhan. Generalized knowledge distillation via relationship match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):1817–1834, 2022.

14

Published as a conference paper at ICLR 2024

Shikang Yu, Jiachen Chen, Hu Han, and Shuqiang Jiang. Data-free knowledge distillation via feature
exchange and activation region constraint. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 24266–24275, 2023.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In Advances in Neural Information Processing Systems, 2022a.

Yifan Zhang, Ying Wei, Qingyao Wu, Peilin Zhao, Shuaicheng Niu, Junzhou Huang, and Mingkui
Tan. Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Transac-
tions on Image Processing, 29:7834–7844, 2020.

Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Self-supervised aggregation of diverse
experts for test-agnostic long-tailed recognition. In Advances in Neural Information Processing
Systems, volume 35, pp. 34077–34090, 2022b.

Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep mutual learning. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4320–4328, 2018.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 11943–11952, 2022.

Bowen Zhao, Chen Chen, and Shu-Tao Xia. DELTA: Debiased Fully Test-time Adaptation. In
International Conference on Learning Representations, 2023.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):
1738–1762, 2019.

15

Published as a conference paper at ICLR 2024

APPENDIX

CONTENTS

A Related Work 17

B More Discussions on CEMA 19

B.1 Transmission efficiency of CEMA . 19

B.2 Adaptation throughput and required upload bandwidth . 19

B.3 Availability in variable bandwidth scenarios . 19

B.4 Adaptation and parameter updating mechanisms . 19

B.5 Entropy-based criterion on overconfidence models . 19

C More Implementation Details 21

C.1 More details on datasets . 21

C.2 More experimental protocols . 21

D More Experimental Results on ImageNet-C 23

D.1 More comparisons with CNN-based models on ImageNet-C 23

D.2 More comparisons with Transformer-based models on ImageNet-C 24

D.3 Availability with CLIP foundation models . 24

E More Ablation Results 27

E.1 Effect of Emax in Eqn. (1) . 27

E.2 Effect of α and β in Eqn. (6) . 27

E.3 Effect of knowledge distillation loss . 27

E.4 Potential of strong foundation models. 28

E.5 Applicability to different edge models. 28

E.6 Effectiveness of the entropy-based criteria . 29

E.7 Effect of the replay buffer size . 29

E.8 Effect of different updating ways . 30

E.9 Effect of updating interval in edge . 30

E.10 Comparisons with more sample identification strategies . 30

E.11 More comparisons on object detection . 31

16

Published as a conference paper at ICLR 2024

A RELATED WORK

Test-time adaptation (TTA) (Sun et al., 2020; Wang et al., 2021) recently has shown great potential
in handling distribution shifts between training and testing data, by directly adapting the pre-trained
model on a given test sample to learn the shifts. Specifically, test-time training (Sun et al., 2020)
updates the model at test time via a self-supervised image rotating prediction (Gidaris et al., 2018).
After that, numerous methods (Zhang et al., 2022b; Wang et al., 2022; Bartler et al., 2022; Niu et al.,
2022; 2023; Wen et al., 2023) have been further devised to improve and broaden the application
scope of TTA. For example, TTT++ (Liu et al., 2021) and MT3 (Bartler et al., 2022) introduce
self-supervised contrastive learning (Chen et al., 2020b) to provide supervision for model updating,
which achieves better adaptation performance. Meanwhile, entropy-based methods (Wang et al.,
2021; Niu et al., 2022; 2023; Zhang et al., 2022a) update the model by minimizing the unsupervised
entropy of model outputs. However, the above methods rely on backpropagation at test time, which
may be infeasible for resource-limited edge devices. To avoid this issue, one can update the model
via a backpropagation-free manner, such as BN statistics adaptation (Schneider et al., 2020; Hu et al.,
2021; Nado et al., 2020; Khurana et al., 2021), classifier adjustment (Iwasawa & Matsuo, 2021) and
reconstruction learning (Gandelsman et al., 2022; Deng et al., 2024). Though these methods improve
the efficiency of TTA, they may yield inferior performance due to the insufficient model update.

In this work, we focus on deploying backpropagation-based model adaptation to cloud-edge systems
to boost model adaptation performance. Considering the computational resources of the cloud and
edges, our method only performs forward propagation without model updating on edge devices
and does not introduce any extra computational cost. Instead, we adapt the model in the cloud by
uploading only partial test samples from the edges. In this way, we allocate all the heavy test-time
adaptation workloads to the cloud and reduce the computational cost of edges.

Knowledge distillation. Knowledge distillation (Hinton et al., 2015) is an effective method to
obtain simple and efficient student models by transferring knowledge from complex teacher models.
According to the types of extracted knowledge, knowledge distillation can be divided into logits-
based distillation methods (Hinton et al., 2015; Yang et al., 2022a; Zhao et al., 2022), feature-based
distillation methods (Romero et al., 2015; Chen et al., 2021a;b; Yang et al., 2022b) and relation-
based distillation methods (Park et al., 2019; Liu et al., 2019; Ye et al., 2022). The above methods
are mostly based on the pre-trained teacher models for offline distillation. Related to our method,
online distillation methods (Zhang et al., 2018; Chen et al., 2020a; Bhat et al., 2021; Qian et al.,
2022) can train teacher models and student models simultaneously in the absence of strong teachers.
In this paper, we exploit knowledge distillation to leverage a stronger foundation model in the cloud
to boost the robustness of an edge model in the context of cloud-edge inference.

Collaborative cloud-edge inference. Conventional cloud-based model inference (Olston et al.,
2017; Vanholder, 2016; Crankshaw et al., 2017) has an unacceptable responsive latency concern,
which limits its applications in practice. To overcome these shortcomings, collaborative cloud-edge
inference (Osia et al., 2018; Wang et al., 2018; Xue et al., 2021; Ren et al., 2021; Liu et al., 2020)
leverages both the computational power on the edge and the cloud by dynamically allocating the
workloads on them, which introduces plenty of advantages (Zhou et al., 2019), such as low response
latency and on-demand deployment. These methods mostly focus on the vanilla model inference
task, i.e., a model simply takes a test instance as input and outputs its predictions. Unlike these
methods, we seek to improve the robustness in cloud-edge inference via test-time adaptation to
alleviate the distribution shift issue. To this end, we propose to divide the TTA task into several
subtasks (including edge model inference and adaptation) and offload them efficiently between the
cloud and edges.

Related to our CEMA, DUET (Lv et al., 2023) and HyperNetwork-based method (Alanov et al.,
2022) seek to generate model parameters in the test time to address the distribution-shifted issue with
cloud-edge collaboration. However, DUET requires uploading all test samples to update the param-
eter generator. While our CEMA excludes unnecessary samples from uploading to the cloud. Thus
our CEMA may be applied to bandwidth-limited scenarios. Moreover, DUET updates the parameter
generator in a supervised way, which requires source training data and corresponding ground-truth
labels. While our CEMA performs model adaptation in a self-supervised manner only with unla-
beled samples. Our CEMA may be applicable to more practical scenarios. The hyperNetwork-based
method requires a prior specification of domain shift categories (i.e., represented by texts) when

17

Published as a conference paper at ICLR 2024

training its HyperDomainNet. While in our CEMA, the domain shifts are unknown in the training
stage. Consequently, the application of HyperDomainNet to our task presents inherent difficulties.

Informative sample identification seeks to quantitatively measure the information contained in a
given sample and then develop sample-aware learning strategies, which has proven to be effective
in many areas, such as active learning (Ren et al., 2022; Gal et al., 2017; Sener & Savarese, 2018;
Beluch et al., 2018; Tsymbalov et al., 2018) and domain adaptation (Zhang et al., 2020; Prabhu et al.,
2021). For instance, BLAD (Gal et al., 2017) measures the sample’s information by estimating the
mutual information between model parameters and model predictions, and dropout-based meth-
ods (Tsymbalov et al., 2018) calculate the variation over a set of model predictions with dropout to
quantify the information. Sener & Savarese (2018) propose a core-set approach to select samples
that can mostly represent the whole dataset. SENTRY (Prabhu et al., 2021) and CoUDA (Zhang
et al., 2020) measure the sample information via the prediction consistency of different data aug-
mentations and networks, respectively.

In our CEMA, one key challenge is to reduce the data transmission costs in the context of efficient
online test-time cloud-edge model adaptation. We achieve this by employing the idea of sample
selection. To be specific, we devise an entropy-based thresholding technique to exclude partial
samples from the model adaptation process. Here, we adopt the entropy as the sample’s information
measurement, as it is easy to use and efficient. The entropy can be calculated over a single sample
and only involves one-time forward propagation, unlike prior methods that may rely on a whole
dataset (Sener & Savarese, 2018) or less-efficient multiple forward propagations (Tsymbalov et al.,
2018; Prabhu et al., 2021). Nonetheless, compared with EATA (Niu et al., 2022) in which the authors
exploit a static thresholding strategy to select unreliable samples, our sample selection strategy is
different in the two aspects: i) we reveal that the suitable threshold may change continuously along
with the online adaptation process and propose a dynamic unreliable sample identification strategy;
ii) we also introduce a low-informative sample selection strategy to identify samples that produce
negligible gradients for model updating.

Self-paced learning. Motivated by the learning principle of humans, self-paced learning (Kumar
et al., 2010) automatically reorders samples during training based on their difficulty. For instance,
SPL (Kumar et al., 2010) and SP-MIL (Sangineto et al., 2019) iteratively select a subset of the most
reliable images for model updates. To enhance the diversity of the selected samples, SPLD (Jiang
et al., 2014) pre-cluster the training data and encourages balance samples section from different clus-
ters. Furthermore, SP-CON (Peng et al., 2021) jointly learns the important weights for each sample
during training. Based on this, they conduct self-paced learning with the importance weights incor-
porated within the loss. Despite both self-paced learning and CEMA improving learning efficiency
by active sample selection, self-paced learning focuses on learning robustness instead of mitigating
computation cost. Consequently, it differs from CEMA in several aspects: 1) Self-paced learning
initiates the learning process with an easy subset of samples, which includes even those of low in-
formativeness. In contrast, our CEMA approach specifically focuses on selecting samples that are
both informative and reliable for adaptation. These two kinds of samples are beneficial to the adap-
tation process. 2) Self-paced learning offline selects the whole dataset for training as the remaining
samples become easier. While our CEMA dynamically adjusts the threshold to continually filter out
less reliable samples. This is conducted online, focusing on maintaining communication efficiency.

18

Published as a conference paper at ICLR 2024

B MORE DISCUSSIONS ON CEMA

B.1 TRANSMISSION EFFICIENCY OF CEMA

We would like to highlight that our CEMA reduces the uploading and downloading communication
cost from two aspects. 1) Reducing uploading communication cost: We design entropy-based cri-
teria to exclude unreliable and low-informative samples. It reduces 60% uploading communication
overhead on ImageNet-C (Gaussian noise, severity level 3) benchmark. 2) Reducing downloading
communication cost: We only update and transfer the affine parameters in BN layers instead of
all the layers. Compared with the distribution of all the parameters in ResNet18 (11.68 MB), our
CEMA only needs to transfer 0.0096 MB parameters and lowers 99.91% downloading communica-
tion overhead.

B.2 ADAPTATION THROUGHPUT AND REQUIRED UPLOAD BANDWIDTH

Taking ResNet101 as the foundation model and ResNet18 as the edge model, our CEMA can run
at 220 images/second on NVIDIA A100 GPU. This is sufficient to support edge devices for real-
time inference (60 images/second). On the edge side, we assume the edge model infers at 60
images/second. Based on that our CEMA reduces 60% uploading communication overhead on
ImageNet-C (Gaussian noise, severity level 3), it needs to upload around 24 images to the cloud per
second. Each image on ImageNet-C is around 28 KB in disk after jpeg compression. In total, the
edge device needs to upload around 24×28=672 KB data to the cloud per second.

B.3 AVAILABILITY IN VARIABLE BANDWIDTH SCENARIOS

In practice, the bandwidth between the cloud and the edge may change constantly. Nevertheless, in
certain contexts, such as surveillance systems in industrial parks, bandwidth is not a major concern
since 1) our CEMA only requires relatively low communication overhead and 2) the cloud and edge
devices are commonly interconnected through high-speed wired networks (typically with 100Mb/s
bandwidth). Introducing the bandwidth variable in our CEMA method would significantly increase
the complexity, which may make the adaptation performance unstable.

We intend to address this issue by exploiting an uploading queue. Specifically, we will upload
test samples with the queue in the background thread, while ensuring that it does not block fore-
ground model inference tasks. When the queue reaches its maximum capacity, we will discard the
test sample with the highest entropy in the queue. Through this mechanism, our CEMA is able
to dynamically adjust the number of uploaded samples according to the available bandwidth. In
this sense, it is equivalent to adjusting the hyperparameter λ in Eqn. (2) according to the available
bandwidth instead of manually pre-defining it. Thus, our proposed method is well-suited to handle
diverse and varying bandwidth conditions.

B.4 ADAPTATION AND PARAMETER UPDATING MECHANISMS

In our CEMA, we feed a sample into the edge model and then determine whether this sample would
be uploaded to the cloud based on Eqn. (4). Once receiving a batch of N uploaded samples in the
cloud, the edge model would be adapted for one time via Eqn. (6). After adaptation, the edge model
would update the parameters from the cloud. Thus the next coming sample would be inferred via
the updated edge model. We have also taken into account scenarios of poor network connectivity (as
detailed in Table 18). In this case, the edge model would be adapted for K time (K>1) via Eqn. (6).
Then the updated parameters would be distributed to the edge and the next coming sample would be
inferred via the updated edge model.

B.5 ENTROPY-BASED CRITERION ON OVERCONFIDENCE MODELS

Recent studies have demonstrated that neural networks can exhibit overconfidence, which may have
an influence on the measure of uncertainty based on entropy-based criteria. To evaluate the over-
confidence in our edge model, we employ a commonly used metric Expected Calibration Error
(ECE) (Naeini et al., 2015). ECE measures the average differences between the model’s predicted

19

Published as a conference paper at ICLR 2024

confidence and its actual accuracy across various confidence intervals. A lower ECE value indi-
cates reduced overconfidence in the model’s predictions. Compared with the best counterpart ETA
(ECE=6.67%), our CEMA achieves ECE=3.07%. This substantial reduction in ECE suggests that
the edge model in CEMA exhibits significantly less overconfidence. Consequently, the uncertainty
estimation using entropy in CEMA could potentially be more accurate than that in ETA.

Moreover, it is important to acknowledge that a certain degree of overconfidence is an inherent aspect
of neural network models. Despite this, our CEMA demonstrates a robust capability to effectively
filter out unreliable and low-informative samples. This effectiveness indicates that the impact of
overconfidence on our CEMA is limited. Therefore, even in the presence of inherent overconfidence
in neural networks, the approach adopted by CEMA to assess uncertainty and selectively upload test
samples is validated.

20

Published as a conference paper at ICLR 2024

C MORE IMPLEMENTATION DETAILS

C.1 MORE DETAILS ON DATASETS

ImageNet-C1. We evaluate our method and the counterparts on ImageNet-C (Hendrycks & Diet-
terich, 2019), which is a widely used benchmark dataset for out-of-distribution generalization. It
is built based on the validation set of the original ImageNet by corrupting the images. Concretely,
as shown in Figure 7, ImageNet-C includes 15 different corruption types, i.e., Gaussian noise, shot
noise, impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog, brightness,
contrast, elastic transformation, pixelation, and JPEG compression. Each corruption has five differ-
ent severity levels (i.e., from level 1 to level 5). Note that the larger severity level indicates a more
severe distribution shift.

ImageNet-R2. We also evaluate our CEMA and compared methods on ImageNet-R (Hendrycks
et al., 2021), which contains 30,000 images with various artistic renditions of 200 ImageNet classes,
which are primarily collected from Flickr and filtered by Amazon MTurk annotators.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 7: Visualizations of corrupted images with 15 corruption types in ImageNet-C benchmark,
which are taken from the original paper of ImageNet-C (Hendrycks & Dietterich, 2019). Each
corruption type has 5 severity levels, resulting in 75 distinct corruptions.

C.2 MORE EXPERIMENTAL PROTOCOLS

CEMA (Ours). In sample filtration strategy of edge devices, we set the entropy threshold
Emax=0.4× lnC as the initialized value following (Niu et al., 2022), where C denotes the number
of classes. Then the threshold Emax decreases based on Eqn. (2) with λ=1.0. We set another entropy
threshold Emin=0.02× lnC in the experiments. In addition to the removal of high/low-entropy test
samples, we use the criteria in (Niu et al., 2022) to remove those samples with similar gradients
(called Non-redundant Sample Identification in the original paper) for all the experiments. For the
test-time adaptation of both the foundation model fθ(·) and the edge model gw(·), we use an SGD
optimizer with a learning rate of 0.00025 and a momentum of 0.9. We set the batch size to 32 while
optimizing the foundation model.

For the adaptation of the edge model, we set the batch size to 128, in which 32 samples are newly
uploaded and the remaining 96 samples are randomly sampled from the replay buffer. We set the
hyper-parameters α and β is set to 3 and 3, respectively. We set the replay buffer size to 10,000. Note

1https://github.com/hendrycks/robustness
2https://github.com/hendrycks/imagenet-r

21

https://github.com/hendrycks/robustness
https://github.com/hendrycks/imagenet-r

Published as a conference paper at ICLR 2024

that all the models used in our experiments are pretrained on ImageNet training set and available
publicly. Specifically, ResNet18, ResNet101, MobileNetV2, MobileNetV3 and ShuffleNetV2 are
from torchvision.3 DeiT-tiny and DeiT-base are from facebookresearch/deit.4 CLIP-
ViT-B/32 is from openai/CLIP.5 Since the edge model gw(·) may infer with a small batch size
(e.g., the batch size is 1), we introduce Batch Renormalization (Ioffe, 2017) to replace the vanilla
Batch Normalization in the edge model following (Zhao et al., 2023). In this case, gw(·) is able
to infer over a very small batch of test samples with moving average statistics instead of batch
re-computing statistics.

Compared methods. We compare our methods with the following state-of-the-art TTA methods.
BN Adaptation (Schneider et al., 2020) uses the weighted sum of training moving average BN
statistics and batch re-computing statistics, in which both the batch size and prior strength are set to
256. ONDA (Mancini et al., 2018) adapts batch normalization statistics over a batch of test samples
with an exponential moving average, in which the momentum is set to 0.9. Pseudo Label (PL) (Lee
et al., 2013) adapts the model with the hard label generated by the model self. We train PL using
an SGD optimizer with a learning rate of 0.001. Tent (Wang et al., 2021) updates the BN affine
parameters via entropy minimization. The learning rate is set to 0.00025 and the batch size is set
to 64. Based on Tent, ETA (Niu et al., 2022) removes test samples with high entropy and similar
gradients. The entropy constant E0 is set to 0.4× lnC, where C is the number of task classes. The ϵ
is set to 0.05. CoTTA (Wang et al., 2022) reduces the error accumulation by using weight-averaged
and augmentation-averaged predictions. We use 32 augmentations and the augmentation threshold is
set to 0.1. The learning rate is set to 0.01. The restoration probability is set to 0.01. LAME (Boudiaf
et al., 2022) modifies the output probability of the classifier instead of the parameters of the model
itself. We use the KNN kernel with 5 nearest neighbors.

3https://github.com/pytorch/vision
4https://github.com/facebookresearch/deit
5https://github.com/openai/CLIP

22

https://github.com/pytorch/vision
https://github.com/facebookresearch/deit
https://github.com/openai/CLIP

Published as a conference paper at ICLR 2024

Table 6: Comparisons with state-of-the-art methods on ImageNet-C (severity levels 1, 2 and 4)
regarding Accuracy (%). We adopt Resnet101 as the foundation model and ResNet18 as the edge
model. † denotes the TTA method that does not require any backpropagation and can be locally
executed in edge devices. The bold number indicates the best result and the underlined number
indicates the second-best result.

Noise Blur Weather Digital
Severity Level=1 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet18 (baseline) 49.2 46.8 35.1 51.7 48.7 57.1 44.0 46.4 52.6 52.8 67.6 58.1 60.3 59.8 59.3 52.6
• BN Adaptation† 59.3 57.9 51.9 57.2 57.4 62.4 54.9 54.1 57.7 61.3 67.9 64.9 62.2 64.8 63.2 59.8
• ONDA† 58.7 58.0 51.3 55.2 56.1 62.3 55.0 53.6 57.2 61.9 68.3 64.6 62.3 65.1 63.0 59.5
• LAME† 48.8 46.3 34.1 51.4 48.2 56.8 43.6 45.9 52.3 52.5 67.3 57.8 60.1 59.5 58.9 52.2
• PL 60.5 60.3 55.9 58.8 60.2 63.6 58.0 57.5 59.0 63.1 67.7 65.4 62.6 65.3 63.5 61.4
• Tent 60.6 60.2 55.4 58.4 60.0 63.6 57.8 56.9 58.9 63.0 67.8 65.0 62.6 65.2 63.6 61.3
• CoTTA 59.1 58.7 52.6 56.7 57.4 62.8 56.0 54.5 57.6 62.2 67.8 64.6 62.5 65.1 63.1 60.0
• ETA 61.4 61.0 57.1 59.6 61.0 63.9 58.7 58.6 59.5 63.7 67.7 65.5 62.9 65.6 63.5 62.0
• CEMA (Ours) 61.7 61.5 58.2 59.8 60.8 63.5 58.8 59.2 59.6 63.6 67.1 65.2 62.5 65.3 63.4 62.0

Severity Level=2 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet18 (baseline) 37.9 33.8 25.8 44.2 36.4 45.2 34.2 23.4 35.0 46.0 65.6 51.2 39.1 59.7 55.8 42.2
• BN Adaptation† 52.5 49.6 45.5 50.4 48.7 55.7 48.6 39.4 45.1 58.3 66.8 62.7 46.2 63.8 60.2 52.9
• ONDA† 51.3 49.1 43.6 45.5 45.7 55.2 48.4 39.9 44.1 59.0 67.2 61.9 46.5 63.4 60.1 52.1
• LAME† 37.2 33.0 24.7 43.7 35.8 44.9 33.6 22.6 34.5 45.4 65.4 50.8 38.8 59.2 55.3 41.7
• PL 55.6 54.6 50.6 52.6 53.7 58.9 53.5 47.9 48.6 61.4 66.5 63.0 48.5 64.7 61.3 56.1
• Tent 55.1 54.0 49.7 52.0 52.7 58.7 52.9 46.3 48.3 61.0 66.6 63.0 48.4 64.4 61.2 55.6
• CoTTA 52.6 50.5 45.5 48.5 48.0 56.4 50.0 41.9 45.4 59.9 66.8 62.6 46.9 63.6 60.3 53.2
• ETA 57.0 56.1 52.6 54.4 55.2 59.8 54.8 50.0 50.2 62.2 66.6 64.0 49.1 64.9 61.4 57.2
• CEMA (Ours) 57.7 56.9 53.5 55.1 55.5 59.8 55.4 51.3 51.1 62.1 66.4 63.7 49.2 64.9 61.4 57.6

Severity Level=4 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet18 (baseline) 7.8 6.2 6.5 18.6 12.1 16.2 22.1 17.5 21.9 28.4 57.9 14.2 39.3 26.4 43.6 22.6
• BN Adaptation† 29.8 24.9 28.2 26.8 25.7 33.0 39.2 31.4 35.0 50.5 62.2 44.6 54.4 49.0 49.0 38.9
• ONDA† 26.9 23.6 24.8 19.0 21.4 30.7 38.7 31.2 33.8 51.4 62.3 37.4 54.0 49.5 48.7 36.9
• LAME† 6.9 5.2 5.1 18.3 11.4 15.8 21.4 16.8 21.3 27.3 57.6 13.4 38.6 25.6 43.1 21.8
• PL 38.3 36.1 36.6 30.6 33.7 40.7 45.9 40.3 38.2 56.0 62.5 44.0 59.0 54.9 53.9 44.7
• Tent 36.7 34.5 34.8 29.6 31.6 39.8 45.4 38.9 38.9 55.7 62.3 45.5 58.6 54.2 53.4 44.0
• CoTTA 29.2 25.6 27.1 21.2 23.3 34.7 41.4 32.8 35.4 53.2 62.5 43.8 54.9 51.6 50.1 39.1
• ETA 41.0 39.0 39.3 33.5 36.1 44.0 47.9 43.5 42.5 57.2 62.9 51.4 59.7 56.4 54.6 47.3
• CEMA (Ours) 38.5 40.4 41.2 35.4 38.4 45.1 48.6 44.9 43.1 58.0 62.9 52.6 60.0 56.9 55.7 48.0

Level 1 Level 2 Level 4
0

10k
20k
30k
40k
50k

Av

g.
 U

pl
oa

de
d

Sa
m

pl
es

50.0k 50.0k 50.0k

30.4k 28.0k
22.9k22.0k 20.6k

16.8k

Tent/PL/CoTTA ETA CETTA (ours)

Figure 8: Comparisons with Tent, PL, CoTTA and ETA on CNN-based models in terms of the
average number of uploaded test samples on ImageNet-C with the severity levels 1, 2 and 4.

D MORE EXPERIMENTAL RESULTS ON IMAGENET-C

D.1 MORE COMPARISONS WITH CNN-BASED MODELS ON IMAGENET-C

In Table 6, we provide more results to compare our CEMA with state-of-the-art methods on
ImageNet-C with the severity levels 1, 2 and 4. We adopt Resnet101 as the foundation (teacher)
model and ResNet18 as the edge (student) model. Our CEMA achieves the highest average accuracy
with severity levels 2 and 4. As for the corrupted images with level 1, our CEMA yields competitive
performance with the best counterpart ETA. The possible reason is that the corruption of the images
in level 1 is very slight. In this case, the foundation model may share a close performance with the
edge model and be hard to transfer knowledge to it.

We also compare the communication overhead of our CEMA with Tent, PL, CoTTA and ETA in
Figure 8. From the results, our CEMA needs to upload a smaller number of test samples to the
cloud. For instance, our CEMA only requires 22.0k uploaded samples, which is fewer than Tent

23

Published as a conference paper at ICLR 2024

Gauss. Shot
Impulse

Defocus
Glass

Motion
Zoom

Snow Frost Fog
Bright

Contrast
Elastic Pixel

JPEG
0

10k

20k

30k

Up

lo
ad

ed
 S

am
pl

es

Level=1 Level=2 Level=3 Level=4 Level=5

Figure 9: The number of uploaded test samples on ImageNet-C with different corruption types and
severity levels.

(50.0k) and ETA (22.0k). The reason is that we exclude both high-entropy and low-entropy samples
in the adaptation process. This improves efficiency in bandwidth-limited cloud-edge systems. The
results demonstrate the superiority of our CEMA over the data transmission. In addition, we report
the number of uploaded samples of our CEMA on ImageNet-C with different corruption types and
severity levels in Figure 9.

D.2 MORE COMPARISONS WITH TRANSFORMER-BASED MODELS ON IMAGENET-C

To verify the effectiveness of our CEMA on transformer-based models, we conduct more experi-
ments on ImageNet-C using DeiT-base as the foundation model and Deit-tiny as the edge model.
Since the baseline methods BN Adaptation and ONDA depends on batchnorm layers, we do not
compare these two baselines on transformer-based models since these models have no batchnorm
layers. Note that we only update the parameters in layernorm layers instead of batchnorm layers in
transformer-based models.

From the results in Table 7, our CEMA outperforms the baselines Tent (44.5% vs.21.8%), CoTTA
(44.5% vs.26.5%) and ETA (44.5% vs.44.5%) greatly in severity level 5 on ImageNet-C. Since our
CEMA 1) removes test samples that are harmful for the adaptation and 2) introduces a foundation
model to transfer adapted knowledge to the edge model. Moreover, from Figure 10, our CEMA
reduces more communication burden than the baseline methods, such as Tent, PL and ETA. For
instance, our CEMA only requires uploading 13.9k test samples to the cloud, much lower than ETA
(25.3k) and Tent (50.0k). The reason is that our CEMA devises an entropy-based sample filtration
strategy, which excludes high/low entropy samples without helpful information. Note that Tent and
PL achieve poor performance when the severity level is 5 since they adopt high-entropy samples
with harmful information for adaptation. In sum, the above results on transformer-based models
further verify the effectiveness of our CEMA.

D.3 AVAILABILITY WITH CLIP FOUNDATION MODELS

We would like to highlight that it is common and practical that the foundation model possesses
knowledge that covers the test samples inferred by the edge model. This can be achieved through
several means: 1) simultaneously training a stronger foundation model and an edge model on the
same training data; 2) using CLIP as the foundation model to circumvent the need to train one.
Given the impressive ability for zero-shot classification of CLIP, it is likely to possess knowledge
that covers test samples across extensive scenarios. For those cases that even CLIP cannot handle,
the complexity exceeds the scope of our current research, and we would defer it to future studies.

In this section, we conduct more experiments on ImageNet-R to demonstrate that our CEMA works
well with CLIP as the foundation model. Note that the CLIP model is pretrained based on its
private data and does not access the training data of the edge model (ResNet18). In Table 8, we
adopt CLIP-ViT-B/32 as the foundation model and ResNet18 as the edge model to perform cloud-
edge adaptation. From the results, our CEMA consistently outperforms Tent and ETA. The results
demonstrate that our CEMA integrates effectively with the CLIP foundation model in practice. We

24

Published as a conference paper at ICLR 2024

Table 7: Comparisons with state-of-the-art methods on ImageNet-C regarding Accuracy (%). We
adopt DeiT-base as the foundation model and DeiT-tiny as the edge model. † denotes the TTA
method that does not require any backpropagation and can be locally executed in edge devices. The
bold number indicates the best result and the underlined number indicates the second-best result.

Noise Blur Weather Digital
Severity Level=1 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
DeiT-tiny (baseline) 63.0 62.8 60.7 56.5 55.8 63.4 46.1 57.4 62.4 59.3 69.6 65.0 64.0 61.2 62.4 60.6
• LAME† 62.8 62.5 60.5 56.0 55.2 63.0 45.4 57.0 62.0 59.0 69.2 64.7 63.6 60.8 62.1 60.3
• PL 64.4 64.3 62.5 61.7 62.0 65.8 54.6 60.3 63.7 64.0 70.4 67.3 66.0 65.3 64.2 63.8
• Tent 64.5 64.3 62.5 62.1 63.0 66.0 56.9 61.0 63.9 64.7 70.4 67.7 66.2 66.1 65.0 64.3
• CoTTA 63.5 63.2 61.3 57.2 56.7 63.9 46.9 58.3 63.0 60.4 69.8 65.9 64.4 62.1 63.1 61.3
• ETA 64.8 64.6 62.9 62.4 63.9 66.2 59.2 61.8 64.2 65.5 70.3 68.0 66.3 67.4 65.8 64.9
• CEMA (Ours) 65.3 64.9 63.2 63.0 64.4 66.5 60.1 62.5 64.1 65.5 70.2 67.8 66.2 68.0 66.2 65.2

Severity Level=2 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
DeiT-tiny (baseline) 58.4 57.0 54.5 50.5 45.0 56.0 37.4 41.3 52.5 54.1 68.4 63.2 43.6 56.2 59.0 53.1
• LAME† 58.2 56.8 54.2 50.0 44.2 55.6 36.6 40.8 52.1 53.4 68.1 63.0 43.2 55.8 58.7 52.7
• PL 60.2 59.6 57.5 56.6 54.8 61.1 47.4 48.0 54.5 62.2 69.5 66.0 49.0 63.6 61.4 58.1
• Tent 60.5 59.7 57.6 57.4 56.7 61.8 50.7 50.0 55.7 63.3 69.5 66.3 50.9 64.6 62.4 59.1
• CoTTA 59.0 57.7 55.2 51.1 45.8 57.0 38.1 42.3 53.4 55.6 68.7 64.2 44.3 57.3 59.7 54.0
• ETA 60.9 60.2 58.2 57.9 58.7 62.3 54.7 52.3 56.8 64.1 69.7 67.0 53.0 66.4 63.6 60.4
• CEMA (Ours) 61.4 60.6 58.9 58.6 59.2 62.7 55.8 54.1 57.4 63.9 69.4 66.6 53.6 67.2 64.2 60.9

Severity Level=3 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
DeiT-tiny (baseline) 49.1 48.0 48.6 38.1 20.5 43.8 31.6 44.9 44.2 47.0 66.7 60.6 55.5 47.6 56.8 46.9
• LAME† 48.9 47.7 48.3 37.5 19.2 43.5 30.8 44.3 43.8 46.2 66.4 60.3 55.1 47.0 56.4 46.3
• PL 52.7 52.8 53.1 46.1 35.6 53.3 42.4 49.8 46.9 58.4 67.9 63.7 62.3 58.4 59.6 53.5
• Tent 53.1 53.1 53.4 47.9 41.0 54.7 46.3 51.5 48.2 60.0 68.1 64.1 63.8 60.1 60.7 55.1
• CoTTA 49.8 48.8 49.4 39.0 20.9 45.1 32.1 46.0 45.4 49.0 67.0 61.6 56.5 49.0 57.5 47.8
• ETA 54.1 54.2 54.2 49.4 47.0 56.1 51.7 53.7 51.0 61.5 68.1 64.6 64.7 62.4 62.0 57.0
• CEMA (Ours) 55.0 55.1 55.1 50.5 48.5 57.1 52.9 55.4 51.8 60.2 68.4 64.3 65.5 63.4 63.0 57.7

Severity Level=4 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
DeiT-tiny (baseline) 35.9 30.4 33.4 27.6 16.1 30.2 26.0 36.5 43.2 41.6 63.8 49.0 44.7 25.8 49.2 36.9
• LAME† 35.6 30.1 33.0 27.0 14.7 29.7 24.9 35.9 42.8 39.0 63.6 48.6 44.0 25.2 48.8 36.2
• PL 42.2 39.7 42.0 34.3 4.5 43.5 10.7 42.1 42.3 2.7 65.8 55.9 55.3 49.2 53.5 38.9
• Tent 43.1 41.0 42.8 38.1 4.5 45.4 39.1 45.1 47.1 4.3 66.0 56.7 58.3 52.4 55.0 42.6
• CoTTA 36.6 31.4 34.1 28.2 16.3 31.5 26.4 37.5 44.3 44.0 64.5 50.8 45.6 26.7 50.0 37.9
• ETA 44.9 43.0 44.8 41.4 42.2 48.3 47.7 48.2 50.0 59.4 66.3 57.6 61.2 55.8 57.2 51.2
• CEMA (Ours) 46.7 45.1 46.2 42.6 43.6 50.1 48.4 50.4 50.8 56.4 66.5 56.3 62.0 57.7 58.6 52.1

Severity Level=5 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
DeiT-tiny (baseline) 17.0 18.2 17.4 19.2 12.6 22.9 20.9 32.6 37.6 32.9 59.6 23.9 23.5 10.3 38.5 25.8
• LAME† 16.5 17.9 17.0 18.6 11.4 22.4 19.9 31.4 37.1 29.6 59.3 23.4 21.3 10.1 38.1 24.9
• PL 1.0 2.3 1.1 17.8 2.4 35.9 3.6 9.4 15.2 0.8 62.8 38.6 3.9 35.9 46.2 18.5
• Tent 4.1 13.3 13.6 27.1 1.6 38.7 3.4 11.7 14.6 0.8 63.2 41.3 2.4 44.1 47.8 21.8
• CoTTA 17.6 18.8 18.1 19.7 12.7 23.9 21.0 33.7 38.7 34.8 60.4 24.4 24.1 10.6 39.3 26.5
• ETA 32.1 33.7 33.4 33.8 35.0 42.9 43.4 45.9 46.0 53.2 63.9 33.9 50.2 50.6 51.0 43.1
• CEMA (Ours) 34.4 36.7 36.2 35.8 34.4 44.8 43.0 48.0 46.8 54.6 64.0 37.0 49.9 50.1 52.8 44.5

Level 1 Level 2 Level 3 Level 4 Level 5
0

10k
20k
30k
40k
50k

Av

g.
 U

pl
oa

de
d

Sa
m

pl
es

50.0k 50.0k 50.0k 50.0k 50.0k

32.9k 31.2k 30.0k 27.8k 25.3k
16.8k 16.1k 15.6k 14.9k 13.9k

Tent/PL/CoTTA ETA CETTA (ours)

Figure 10: Comparisons with Tent, PL, CoTTA and ETA on Transformer-based models in terms of
the average number of uploaded test samples on ImageNet-C with the severity levels 1 - 5.

also verify that the edge model is able to be guided by different simultaneously training foundation
models in Table 13.

25

Published as a conference paper at ICLR 2024

Table 8: Comparisons with Tent and ETA on ImageNet-R. We adopt CLIP-ViT-B/32 as the founda-
tion model and ResNet18 as the edge model.

Model Acc. (%) #Uploaded samples

ResNet18 (baseline) 20.4 –
• Tent (Wang et al., 2021) 23.6 30,000 (100%)
• ETA (Niu et al., 2022) 26.2 7,457 (25%)
• CEMA (Ours) 26.9 6,521 (22%)

26

Published as a conference paper at ICLR 2024

E MORE ABLATION RESULTS

E.1 EFFECT OF EMAX IN EQN. (1)

Our CEMA employs hyperparameters Emax and Emin and in Eqns. (1) and (3), respectively. These
two hyperparameters denote the thresholds while excluding high/low entropy test samples. In prac-
tice, we determine these hyperparameters through a systematic approach guided by the following
principles: 1) We set these hyperparameters to be linked to the number of classes instead of grounded
in absolute terms. Specifically, we prescribe its value as γ × lnC, where 0 < γ < 1 and C denotes
the number of classes. Consequently, this hyperparameter exhibits a robust insensitivity to fluctua-
tions in the number of classes. 2) Next we select the appropriate values of these hyperparameters
by examining the impact of hyperparameters on the ImageNet-C (Gaussian noise, severity level 3)
dataset. Based on the results, we select relatively well-performing hyperparameters and keep them
as constants by default across different datasets, including ImageNet-R and various corruption types
and severity levels within ImageNet-C.

In our entropy-based sample filtration, we adopt an entropy threshold Emax to remove high-entropy
samples. Since the high-entropy samples may have a negative impact on adaptation performance.
In Table 9, we report the adaptation performance when we upload less/more high entropy samples
by adjusting Emax. When Emax is small, our CEMA removes too many samples during adaptation
and thus it is hard to learn helpful knowledge from the remaining samples. When Emax is too large,
some high-entropy samples would participate in the adaptation and contribute harmful gradients,
resulting in performance degradation. From the results, our CEMA achieves the highest adaptation
performance when Emax=0.4. Thus we set Emax to 0.4 in our experiments.

Table 9: Effect of the entropy threshold Emax of our CEMA on ImageNet-C (Gaussian noise,
severity level=3).

Emax 0.2 0.3 0.4 0.5 0.6

Accuracy (%) 50.2 50.8 51.1 50.5 46.4
#Uploading samples 10,560 14,276 17,479 20,067 21,931

E.2 EFFECT OF α AND β IN EQN. (6)

We conduct ablation studies to investigate the effect of different hyper-parameters α and β in
Eqn. (6) in Table 10 and 11, respectively. Here, α and β both are selected from {1, 2, 3, 4, 5,
6}. From the results, when α=3 our CEMA achieves the best performance (51.1%). As for the
hyper-parameter β, we obtain the highest accuracy (51.1%) when β=3. Thus, we set α=3 and β=3
in all the experiments. In other scenarios on various datasets, we keep them the same as those on
Gaussian noise, including ImageNet-R and ImageNet-C (encompassing 15 types of corruption and
5 severity levels, 75 different scenarios in total). Extensive experiments show that our CEMA works
well with these hyperparameters.

Table 10: Effect of hyper-parameter α in
Eqn. (6) on ImageNet-C (Gaussian noise, sever-
ity level 3).

α 1 2 3 4 5 6

Accuracy (%) 50.5 51.0 51.1 51.0 50.6 50.3

Table 11: Effect of hyper-parameter β in
Eqn. (6) on ImageNet-C (Gaussian noise, sever-
ity level 3).

β 1 2 3 4 5 6

Accuracy (%) 50.7 51.0 51.1 50.7 50.4 50.0

E.3 EFFECT OF KNOWLEDGE DISTILLATION LOSS

While updating the edge model via Eqn. (6), entropy minimization is not equal to optimizing with the
pseudo label from its predictions. Since the entropy minimization and pseudo label approaches serve
different functions to improve the performance of the edge model. The pseudo labels provide a direct
label for the corresponding sample to align the decision boundaries. On the other hand, entropy

27

Published as a conference paper at ICLR 2024

minimization encourages the model to make more confident predictions by penalizing uncertainty in
its output distribution. Furthermore, it is important to clarify that the entropy minimization approach
operates on the average entropy across the entire batch of samples, rather than focusing on the
confidence of individual samples. This methodology aims to optimize the overall confidence of the
model, guiding it towards more assured predictions on a collective basis, rather than encouraging
each sample to converge towards its highest predictive probability. This distinction underscores
the complementary nature of our CEMA, utilizing both cross-entropy loss for decision boundary
alignment to the foundation model and entropy loss for enhancing the model’s collective confidence.

In Table 12, we report the performance of our CEMA with/without LKL as well as LCE in Eqn. (6).
The baseline without LKL andLCE employs only LENT. From the results, with the KL divergence
LKL, our CEMA achieves better accuracy than the baseline (LENT) (50.5% vs. 50.0%). Since
the foundation model transfers its knowledge on out-of-distribution samples to the edge model via
LKL. In addition, our CEMA further improves performance with LCE. The results show that the
combination of both losses outperforms the adoption of either one in isolation (51.1% vs. 50.5%). It
highlights the necessity and significance of the CE loss.

Table 12: Effect of components in the loss for updating the edge model on ImageNet-C (Gaussian
noise) with ResNet18 as the edge model.

LENT LCE LKL Accuracy (%) #Uploads

× ✓ ✓ 50.2 18,497
✓ × × 50.0 17,263
✓ × ✓ 50.5 17,379
✓ ✓ × 50.7 17,315
✓ ✓ ✓ 51.5 17,479

E.4 POTENTIAL OF STRONG FOUNDATION MODELS.

In the cloud, we can exploit stronger foundation models for adaptation when we have more computa-
tional budgets. In this sense, our CEMA has great potential in real-world applications. In Table 13,
we report the results on ImageNet-C (Gaussian noise, severity level 3) with different foundation
models, namely, ResNet101, ResNet152 and ConvNeXt-T (Liu et al., 2022). Note that ResNet152
and ConvNeXt-T are stronger foundation models, which outperform ResNet101 on ImageNet. From
the results, as the foundation model becomes stronger, the edge model yields higher accuracy. The
results show the potential of CEMA with stronger foundation models in real-world applications.

Table 13: Effect of different foundation models.

Foundation Model Level 3 Level 5
Acc. (%) #Upload Acc. (%) #Upload

ResNet101 51.1 17,479 29.8 9,889
ResNet152 51.5 17,461 30.3 10,484
ConvNeXt-T 52.0 17,936 31.2 10,236

E.5 APPLICABILITY TO DIFFERENT EDGE MODELS.

In Table 14, we report the results on ImageNet-C (Gaussian noise, severity level 5) with different
light-weight models that can be deployed on the resources-limited edge, including MobileNetV2,
MobileNetV3 and ShuffleNetV2. On all these edge models, our CEMA outperforms ETA in terms
of both the adaptation accuracy and the communication overhead. For example, our CEMA achieves
higher accuracy (37.1% vs. 31.1%) than ETA with ShuffleNetV2 as the edge model with a much
fewer number of uploaded samples (13,975 vs. 24,558). The results show that our CEMA is appli-
cable to various lightweight edge models.

28

Published as a conference paper at ICLR 2024

Table 14: Comparisons of different edge models on ImageNet-C (Gaussian noise, severity level
5) with ResNet101 as the foundation model. We adopt two popular lightweight edge models, i.e.,
MobileNetV2, MobileNetV3 and ShuffleNetV2, to verify our proposed method CEMA.

Model Acc. (%) #Upload

MobileNetV2 (baseline) 19.4 –
• ETA (Niu et al., 2022) 45.6 25,133 (50%)
• CEMA (Ours) 47.3 16,117 (32%)

MobileNetV3 (baseline) 25.3 –
• ETA (Niu et al., 2022) 40.1 19,094 (38%)
• CEMA (Ours) 41.2 15,414 (31%)

ShuffleNetV2 (baseline) 11.2 –
• ETA (Niu et al., 2022) 31.3 24,668 (49%)
• CEMA (Ours) 37.1 13,975 (28%)

E.6 EFFECTIVENESS OF THE ENTROPY-BASED CRITERIA

To verify the effectiveness of the proposed entropy-based sample filtration strategy, we compare
our CEMA with two variants on ImageNet-C (Gaussian noise, severity level 5), namely uploading
all test samples and randomly uploading an equal number of test samples. The variant randomly
uploading an equal number of test samples denotes randomly uploading only partial test samples to
the cloud, in which the number of uploading samples is the same as our CEMA. From Table 15, our
CEMA outperforms randomly uploading an equal number of test samples (29.8% vs. 28.0%). In
addition, though the variant uploading all test samples achieves higher performance since it provides
sufficient test samples for distillation. It requires many more test samples to be uploaded from
the edge to the cloud (50,000 vs. 9,889). The results demonstrate the effectiveness of our devised
entropy-based filtering criteria.

Table 15: Effectiveness of the proposed entropy-based criteria on ImageNet-C (Gaussian noise,
severity level 5) with ResNet18 as the edge model.

Strategy Accuracy (%) #Uploading Samples

Uploading all test samples 30.6 50,000
Randomly uploading an equal number of test samples 28.0 10,153
Uploading with entropy-based criteria (our CEMA) 29.8 9,889

E.7 EFFECT OF THE REPLAY BUFFER SIZE

To investigate the effect of the size of the replay buffer, we conduct an ablation with the different
sizes selected from {0, 1000, 2000, 3000, 5000, 10000,∞}. Note that the size∞ denotes the buffer
is unlimited. From Table 16, our CEMA achieves better accuracy on ImageNet-C when we increase
the replay buffer size. We obtain the best performance at 51.1% when the buffer size is 10,000 (10
samples for each class on average). Employing a replay buffer of unlimited size does not yield any
improvement in adaptation accuracy, which remains at 51.1%. However, this leads to a significant
increase in storage usage, escalating from 5.6 GB to 9.8 GB. The reason is that we can sample more
diverse samples for the larger replay buffer. This may provide more distribution information for
adaptation. Note that a replay buffer with a size of 10,000 with image resolution 224×224 requires
around 5.6 GB memory. This can be affordable for the typical cloud GPU servers. Thus we set the
buffer size to 10,000 in all the experiments.

29

Published as a conference paper at ICLR 2024

Table 16: Effect of the size of the replay buffer B on ImageNet-C (Gaussian noise, severity level 3)
with ResNet18 as the edge model.

Size 0 1000 2000 3000 5000 10000 ∞
Accuracy (%) 47.7 50.0 50.3 50.5 50.9 51.1 51.1
Storage (GB) 0 0.6 1.1 1.7 2.8 5.6 9.8

E.8 EFFECT OF DIFFERENT UPDATING WAYS

To investigate the effect of different ways to update parameters, we conduct more experiments on
ImageNet-C (Gaussian noise, severity level 3). We consider two ways to update models: 1) updating
all the parameters and 2) only updating parameters in batchnorm (BN) layers. From Table 17, we see
only updating BN on the foundation model and the edge model achieves the best adaptation perfor-
mance and the lowest communication overhead (especially on distributed parameter size). Updating
all the layers may disrupt the previously learned knowledge and lead to inferior adaptation perfor-
mance. Furthermore, it would require the distribution of more parameters and result in significant
communication overhead. Thus, we choose to only update BN layers for both the foundation model
and the edge model.

Table 17: Ablations the effects of different ways to update parameters on ImageNet-C (Gaussian
noise, severity level 3). fθ and fw denote the foundation model and the edge model, respectively.
“Distributed Param. Size” denotes how many model parameters should be transferred between the
cloud and the edge.

Only updating BN for fθ Only updating BN for fw #Upload Distributed Param. Size (MB) Acc. (%)

× × 14,221 11.68 31.9
× ✓ 16,871 0.0096 46.4
✓ × 17,608 11.68 43.6
✓ ✓ 17,479 0.0096 51.1

E.9 EFFECT OF UPDATING INTERVAL IN EDGE

In scenarios where communication and computation resources are limited, the edge devices may
only download and update the edge model once while the cloud performs every K times adaptation
(K>1). To investigate the effect of K, we perform more experiments on ImageNet-C (Gaussian
noise, severity level 3) with different K from 1 to 5. From Table 18, the adaptation performance
slightly drops when K grows. For example, when K increases from 1 to 3, the adaptation accuracy
only drops from 51.1% to 50.8%. Even when K becomes 5, the adaptation accuracy is still 50.5%.
These demonstrate the effectiveness of our CEMA in scenarios with limited bandwidth.

Table 18: Performance comparisons on ImageNet-C (Gaussian noise, severity level 3) with different
updating intervals K on the edge side.

K 1 2 3 4 5

Accuracy (%) 51.1 51.0 50.8 50.7 50.5
#Uploading samples 17,479 17,492 17,333 17,396 17,402

E.10 COMPARISONS WITH MORE SAMPLE IDENTIFICATION STRATEGIES

To further demonstrate the effectiveness of our sample identification strategy, we add more experi-
ments on ImageNet-C to compare our CEMA with more strategies, namely SENTRY (Prabhu et al.,
2021) and BALD (Houlsby et al., 2011). SENTRY measures the sample information via the predic-
tion consistency regarding different data augmentations. Besides, BALD achieves this by calculating
the entropy differences between the current sample and previous samples.

30

Published as a conference paper at ICLR 2024

From Table 19, SENTRY achieves much worse accuracy than our CEMA (45.6% vs. 51.1%). The
results show that the prediction consistency regarding different data augmentations is hard to identify
the helpful samples in entropy minimization. Besides, BALD yields an adaptation accuracy of
50.7%, which is still worse than our CEMA. The results demonstrate the effectiveness of our CEMA
in filtering out low-informative samples.

Table 19: Comparisons of different strategies to identify unreliable and low-informative samples on
ImageNet-C (Gaussian noise) with ResNet18 as the edge model.

Strategy Accuracy (%) #Uploads

SENTRY (Prabhu et al., 2021) 45.6 17,299
BALD (Houlsby et al., 2011) 50.7 17,319
CEMA (Ours) 51.1 17,479

E.11 MORE COMPARISONS ON OBJECT DETECTION

We conduct more experiments by applying our CEMA on corrupted COCO 2017 (Lin et al., 2014)
with YOLOv5 (Redmon et al., 2016) model. We generate this corrupted version (Gaussian noise,
severity level 3) of COCO 2017 dataset following ImageNet-C (Hendrycks & Dietterich, 2019).
We use YOLOv5-nano as the edge model and YOLOv5-large as the foundation model. We set the
learning rate to 0.0001 and the other hyperparameters are the same as those in the image classi-
fication task. From Table 20, our CEMA outperforms the baseline (18.3 vs. 11.6 mAP) and ETA
(18.3 vs. 15.0 mAP). Moreover, this improved performance was achieved with a smaller number of
samples uploaded for adaptation. The results demonstrate the applicability and effectiveness of our
CEMA on the object detection task.

Table 20: Comparisons on corrupted COCO 2017 (Gaussian noise, severity level 3).

Model mAP #Upload

YOLOv5-nano (baseline) 11.6 –
• ETA (Niu et al., 2022) 15.0 3,875 (78%)
• CEMA (Ours) 18.3 3,261 (65%)

31

	Introduction
	Cloud-Edge Communication-Efficient Model Adaptation
	Efficient Adaptation for Robustness and Communication Enhancement
	Sample Filtration for Communication Cost Reduction in Edge Side
	Replay-based Knowledge Distillation for Adaptation in Cloud Side

	Experiments
	Performance Comparisons on ImageNet-C
	Performance Comparisons on ImageNet-R
	Further Experiments

	Conclusion
	Related Work
	More Discussions on CEMA
	Transmission efficiency of CEMA
	Adaptation throughput and required upload bandwidth
	Availability in variable bandwidth scenarios
	Adaptation and parameter updating mechanisms
	Entropy-based criterion on overconfidence models

	More Implementation Details
	More details on datasets
	More experimental protocols

	More Experimental Results on ImageNet-C
	More comparisons with CNN-based models on ImageNet-C
	More comparisons with Transformer-based models on ImageNet-C
	Availability with CLIP foundation models

	More Ablation Results
	Effect of Emax in Eqn. (1)
	Effect of and in Eqn. (6)
	Effect of knowledge distillation loss
	Potential of strong foundation models.
	Applicability to different edge models.
	Effectiveness of the entropy-based criteria
	Effect of the replay buffer size
	Effect of different updating ways
	Effect of updating interval in edge
	Comparisons with more sample identification strategies
	More comparisons on object detection

