
Breaking the Curse of Space Explosion: Towards Effcient NAS
with Curriculum Search

Yong Guo * 1 Yaofo Chen * 1 2 Yin Zheng * 3 Peilin Zhao * 4 Jian Chen 1 5 Junzhou Huang 4 Mingkui Tan 1

Abstract
Neural architecture search (NAS) has become an
important approach to automatically fnd effective
architectures. To cover all possible good archi-
tectures, we need to search in an extremely large
search space with billions of candidate architec-
tures. More critically, given a large search space,
we may face a very challenging issue of space
explosion. However, due to the limitation of com-
putational resources, we can only sample a very
small proportion of the architectures, which pro-
vides insuffcient information for the training. As
a result, existing methods may often produce sub-
optimal architectures. To alleviate this issue, we
propose a curriculum search method that starts
from a small search space and gradually incorpo-
rates the learned knowledge to guide the search
in a large space. With the proposed search strat-
egy, our Curriculum Neural Architecture Search
(CNAS) method signifcantly improves the search
effciency and fnds better architectures than ex-
isting NAS methods. Extensive experiments on
CIFAR-10 and ImageNet demonstrate the effec-
tiveness of the proposed method.

1. Introduction
Deep neural networks (DNNs) have been producing state-
of-the-art results in many challenging tasks including im-
age classifcation (Krizhevsky et al., 2012; Liu et al., 2020;
Zheng et al., 2015; Guo et al., 2020a), semantic segmenta-
tion (Shelhamer et al., 2017; Chen et al., 2018; Huang et al.,
2019), and many other areas (Zheng et al., 2016b;a; Jiang

*Equal contribution . This work is done when Yong Guo works
as an intern in Tencent AI Lab. 1School of Software Engineer-
ing, South China University of Technology 2Pazhou Laboratory
3Weixin Group, Tencent 4Tencent AI Lab, Tencent 5Guangdong
Key Laboratory of Big Data Analysis and Processing. Correspon-
dence to: Mingkui Tan <mingkuitan@scut.edu.cn>, Jian Chen
<ellachen@scut.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

architecture search space

Stage-3Stage-1 Stage-2

Standard NAS with

fixed search space
NAS with curriculum search

search direction

Searched Architecture

(acc=97.40%, #params=3.66M)

Searched Architecture

(acc=97.10%, #params=3.99M)

searched architecture

initial sampled architectureadaptively evolved subspace

Figure 1. Comparisons of the search process between standard
NAS methods and our proposed curriculum NAS (CNAS) method.
By gradually refning the candidate subspace, CNAS performs
much accurate architecture sampling, thus can signifcantly im-
prove the search effciency and fnd better architectures than stan-
dard NAS methods.

et al., 2017; Chen et al., 2019; Zeng et al., 2019; Hosseini
et al., 2020; Guo et al., 2020b; Cao et al., 2018). Besides
designing DNNs manually, there is a growing interest in
automatically designing effective architectures by neural ar-
chitecture search (NAS) methods (Zoph & Le, 2017; Pham
et al., 2018). Existing studies show that the automatically
searched architectures often outperform the manually de-
signed ones in both image classifcation tasks and language
modeling tasks (Zoph et al., 2018; Lian et al., 2020).

NAS methods seek to search for an optimal architecture in
a predefned search space. To this end, existing methods
have to explore the whole search space by sampling suff-
ciently many architectures. However, the search space is
often extremely large (e.g., billions of candidate architec-
tures (Pham et al., 2018)), resulting in the space explosion
issue. To be specifc, due to the limitation of computational
resources, we can only sample a very small proportion of
the architectures from the search space. Thus, we can only
receive very limited information to guide the search process.
As a result, NAS models become hard to train and often fnd
sub-optimal architectures.

To alleviate the space explosion issue, we seek to improve
the search by conducting more accurate sampling, i.e., ex-
ploring the subspace that contains potentially better archi-
tectures. In this way, given limited resources to conduct

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

sampling, we can fnd good architectures with relatively
high probability and thus improve the search performance.
However, how to train NAS models to perform more accu-
rate sampling is still unknown.

To address the above issues, we propose a novel curriculum
search method to improve the search performance. Specif-
cally, we frst conduct the search in a relatively small space
where suffcient exploration is possible. Then, we gradu-
ally enlarge the search space and use the previously learned
knowledge to make the sampling more accurate in the larger
search space. The key idea follows the basic concept of cur-
riculum learning that humans and animals can learn much
better when they gradually learn new knowledge (Bengio
et al., 2009; G¨ ¸ehre & Bengio, 2016).ulc

Equipped with the curriculum search, we propose a Cur-
riculum Neural Architecture Search (CNAS) method. Our
CNAS enlarges the search space by gradually increasing the
number of candidate operations and exploits the previously
learned knowledge to achieve accurate sampling. As shown
in Figure 1, once we have found some good architectures
in a small search space and gradually enlarge the space, it
becomes more likely to fnd a candidate subspace (grey cir-
cle) that shares some common knowledge with the previous
one but contains potentially better architectures. When we
consider multiple stages to perform architecture search, the
subspace would adaptively evolve along the search process.
Based on the adaptively evolved subspace, CNAS is able
to conduct more accurate sampling to fnd better architec-
tures in a large search space. Furthermore, to improve the
training stability when we introduce a previously unseen op-
eration, we propose an operation warmup strategy to make
all the operations relatively fair when sampling architectures.
Extensive experiments demonstrate the superiority of our
CNAS over existing methods.

Our contributions are summarized as follows:

• We propose a novel Curriculum Neural Architecture
Search (CNAS) method to alleviate the training diff-
culties of the NAS problem incurred by the extremely
large search space. To this end, we break the original
NAS problem into a series of simpler problems and
train the controller model in a progressive manner.

• We propose a curriculum search method that gradu-
ally incorporates the knowledge learned from a small
search space. To this end, we start from a search space
with one operation and gradually add new operations.
Thus, the previously learned knowledge about how to
use a specifc operation can be effectively preserved.

• Extensive experiments on several benchmark data sets
show that the architectures found by our CNAS signif-
cantly outperform the architectures obtained by state-
of-the-art NAS methods.

2. Related Work
Neural architecture search. In the past few years, neural
architecture search (NAS) has attracted considerable atten-
tion to automatically design effective architectures. Zoph
& Le (2017) frst propose to learn a controller for an opti-
mal confguration of each convolution layer. However, it
performs search for an entire network, leading to extremely
large search space and very high search cost. To reduce the
search space, NASNet (Zoph et al., 2018; Pham et al., 2018)
proposes to search for the optimal neural cell rather than the
whole network. Related to our method, Liu et al. (2018a)
propose a PNAS method that gradually enlarges the search
space and performs architecture search in a progressive man-
ner. Specifcally, PNAS picks the top K architectures in
each stage and gradually adds nodes to progressively enlarge
the search space. However, there are several limitations with
PNAS. First, the unselected architectures as well as all the
architectures that are obtained by adding additional nodes
would be ignored. As a result, it greatly limit the possible
search space to fnd good architectures in the next stage.
Second, PNAS has to train a large number of architectures
until convergence to learn a performance predictor, resulting
in extremely high search cost (i.e., 255 GPU days).

Curriculum learning. Bengio et al. (2009) propose a
new learning strategy called curriculum learning, which
improves the generalization ability of model and accelerates
the convergence of the training process. Recently, many ef-
forts have been made to design effective curriculum learning
methods (Wang et al., 2019; Zhang et al., 2019). Kumar et al.
(2010) propose a self-paced learning algorithm that selects
training samples in a meaningful order. Khan et al. (2011)
provide evidence about the consistency between curriculum
learning and the learning principles of human. Bengio et al.
(2013) further present insightful explorations for the ratio-
nality of curriculum learning. Matiisen et al. (2019) build a
framework that produces Teacher-Student curriculum learn-
ing. Moreover, curriculum learning has been applied to
NAS (Cheng et al., 2018; Zoph & Le, 2017). Cheng et al.
(2018) propose an InstaNAS method that uses a dynamic re-
ward function to gradually increase task diffculty, and Zoph
& Le (2017) propose to gradually increase the number of
layers. Unlike these methods, we construct simpler prob-
lems from a new perspective of search space in the context
of the NAS problem.

3. Preliminary
For convenience, we revisit the Neural Architecture Search
(NAS) problem. Reinforcement Learning (RL) based NAS
methods seek to learn a controller to produce candidate
architectures. Let θ be the trainable parameters and Ω be
the search space. A controller can produce a candidate

Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

architecture α as follows:

α ∼ π(α; θ,Ω), (1)

where π is a policy learned by the controller, i.e., a dis-
tribution of candidate architectures. In practice, the policy
learned by the controller can be either the discrete form (e.g.,
NAS (Zoph & Le, 2017) and ENAS (Pham et al., 2018)), or
the differentiable form like DARTS (Liu et al., 2019).

To measure the performance of an architecture, we have to
train a model built with the architecture until convergence.
Let L be the loss function on training data. Given an archi-
tecture α, the optimal parameters w∗(α) can be obtained
by w∗(α) = arg minw L (α,w). Then, one can measure
the performance of α by some metric R (α,w∗(α)), e.g.,
the accuracy on validation data. Following the settings of
NAS (Zoph & Le, 2017) and ENAS (Pham et al., 2018), we
use Reinforcement Learning (RL) and take the performance
R(·) as the “reward” to train the controller model.

The goal of RL-based NAS is to find an optimal policy
by maximizing the expectation of the reward R(α,w∗(α)).
Thus, the NAS problem can be formulated as a bilevel opti-
mization problem:

max
θ

Eα∼π(α;θ,Ω)R (α,w∗(α)) ,

s.t. w∗(α) = arg min
w
L (α,w) .

(2)

To solve this problem, one can update θ and w in an alterna-
tive manner (Zoph & Le, 2017; Pham et al., 2018).

4. Curriculum Neural Architecture Search
For NAS methods, the huge search space is often the main
bottleneck to the architecture search performance. In gen-
eral, a small space often leads to sub-optimal architectures
with inferior performance, but a large search space would
incur severe space explosion issue and may even make the
learning task infeasible. Specifically, since we can only
explore a very small proportion of architectures to train the
controller, it is very difficult to learn a NAS model to find
good architectures in a large search space.

In this paper, we seek to improve NAS by alleviating the
space explosion issue. We first analyze the size of the search
space. Then, we propose a curriculum search strategy to
break the original NAS problem into a series of simpler
problems and then we solve each problem in a progressive
manner. For convenience, we call our method Curriculum
Neural Architecture Search (CNAS). An illustrative compar-
isons between the standard NAS methods and the proposed
CNAS can be found in Figure 1.

0 1 2 3 4 5 6 7 8 9
the number of operations/nodes

102

104

106

108

1010

1012

si
ze

 o
f s

ea
rc

h
sp

ac
e

increasing the number of operations
increasing the number of nodes

Searched Architecture
(acc=97.15%, #params=3.86M)

Searched Architecture
(acc=97.40%, #params=3.66M)

Figure 2. Comparisons of different search spaces on one cell archi-
tecture. Following (Liu et al., 2019), we consider a cell architecture
with 4 intermediate nodes and 8 candidate operations.

4.1. Search Space Size Analysis

We consider learning a generic computational cell because
searching a good architecture for an entire network is very
computationally expensive (Zoph et al., 2018). In NAS
methods (Zoph & Le, 2017; Pham et al., 2018; Liu et al.,
2019), a cell-based architecture α can be represented by
a directed acyclic graph (DAG), i.e., α = (V, E). Here,
V is the set of nodes that represent the feature maps in a
neural network. E is the set of the edges that represent some
computational operations (e.g., convolution or pooling). For
convenience, we denote the numbers of nodes by B.

Following (Liu et al., 2019), a DAG contains two input
nodes, B − 3 intermediate nodes, and one output node. The
input nodes denote the outputs of the nearest two cells in
front of the current one. The output node concatenates the
outputs of all the intermediates to produce a final output of
the cell. In the DAG, each intermediate node also takes two
previous nodes in this cell as inputs. In this sense, there are
2× (B− 3) edges in the DAG and we will determine which
operation should be applied to each of them.

Given B nodes and K candidate operations, the size of the
search space Ω can be computed by1

|Ω| = K2(B−3)
(
(B − 2)!

)2
. (3)

From Eqn. (3), the search space can be extremely large when
we have a large B or K. For example, ENAS (Pham et al.,
2018) has a search space of |Ω| ≈ 5×1012 with B=8 and
K=5, and DARTS (Liu et al., 2019) has a search space of
|Ω| ≈ 2×1011 with B=7 and K=8. In the extremely large
search space, we can only sample a very limited number
of architectures. As a result, the feedback/reward from
the sampled architectures is insufficient, making it hard to
train a good controller. As a result, the search process may
severely suffer from the space explosion issue.

1More analysis of search space size is put in supplementary.

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

3

10

2

3

Stage-1

3

10

2

3

Stage-2

3

10

2

3

Stage-3

Figure 3. An overview of the search space used by CNAS. We
show the candidate operations of the super network in different
stages. The edges with different colors denote different operations.
For simplicity, we omit the output node in this fgure.

4.2. NAS with Curriculum Search

To alleviate the space explosion issue, we seek to improve
the search process by providing more powerful information
to improve the quality of architecture sampling. To this end,
we exploit the idea of curriculum learning that humans often
learn much better when they gradually learn new knowl-
edge/concepts. Specifcally, we propose to break the NAS
problem into a series of simpler problems. Since the size
of the search space is an indicator of the diffculty level of
the NAS problem, we may change the size of search space
to construct the problems with different diffculty levels. In
this sense, we can cast the training of NAS models into
a multi-stage process to gradually incorporate previously
learned knowledge to fnd better architectures.

As mentioned in Section 4.1, the size of search space |Ω|
depends on the number of nodes B and the number of candi-
date operations K. In this sense, we can adjust either B or
K to obtain the search spaces with different sizes. To fnd a
better choice between these two methods, we compare the
search space w.r.t. different B and K. Following (Pham
et al., 2018; Liu et al., 2019), we adopt a widely used setting
with B=7 nodes (i.e., 4 intermediate nodes) and K=8 can-
didate operations. In this case, we investigate the effect of
increasing the number of nodes and operations on the size
of the search space in Figure 2. From Figure 2 and Eqn. (3),
increasing node would make the size of search space grow
much faster than increasing operation. As a result, increas-
ing node would introduce a non-negligible gap between
adjacent stages. Thus, the training diffculty incurred by
the extremely increased search space is still severe. On the
contrary, increasing operation from 1 to K provides a more
slow growth of search space, making progressive training
possible (See the detailed comparisons in Section 6.1).

Thus, we seek to enlarge the search space by gradually
increasing the number of candidate operations. Specifcally,
we start from the search space with a single operation and

Algorithm 1 Training method for CNAS.
Require: The operation sequence O, learning rate η, the number

of the iterations for operation warmup M , the uniform distri-
bution of architectures p(·), the controller’s policy π(·), super
network parameters w, controller parameters θ.

1: Initialize w and θ, Ω0 = Ø.
2: for i=1 to |O| do
3: Enlarge Ωi by adding Oi to the set of candidate operations;
4: // Operation warmup
5: for j=1 to M do
6: Sample α ∼ p(α; Ωi);
7: w ← w − ηrw L(α, w);
8: end for
9: while not convergent do

10: // Update θ by maximizing the reward
11: for each iteration on validation data do
12: Sample α ∼ π(α; θ, Ωi);
13: Update the controller by ascending its gradient:
14: R(α, w)rθ log π(α; θ, Ωi)+λH(π(·; θ, Ωi));
15: end for
16: // Update w by minimizing the training loss
17: for each iteration on training data do
18: Sample α ∼ π(α; θ, Ωi);
19: w ← w − ηrw L(α, w).
20: end for
21: end while
22: end for

then add a new operation to the set of candidate operations
in each stage. To accelerate the search process, we adopt
the parameter sharing (Pham et al., 2018) technique that
makes all the child networks share their parameters in a
super network. For clarity, we show the super network with
the progressively growing search space in Figure 3. Without
loss of generality, we add the operations in a random order
(See discussions about the order in Section 7.2).

Curriculum training scheme. Based on the curriculum
search strategy, we can obtain a series of problems with
different diffculty levels. However, how to effectively solve
these problems to improve the training of the controller
model still remains a question. To address this issue, we
propose a curriculum training algorithm and show the details
in Algorithm 1. Specifcally, we progressively train the
controller to solve the problems with different search spaces.
During the training, we gradually increase the number of
operations from 1 to K. Thus, the whole training process
can be divided into K stages. To encourage the diversity
when sampling architectures, we introduce an entropy term
into the objective. Let Ωi be the search space of the i-th
stage. The training objective in the i-th stage becomes

max Eα∼π(·;θ,Ωi) [R (α, w ∗ (α))] + λH (π (·; θ, Ωi)) ,
θ

s.t. w ∗ (α) = arg min L (α, w) ,
w

(4)
where π(·; θ, Ωi) denotes the learned policy w.r.t. Ωi, H(·)
evaluates the entropy of the policy, and λ controls the

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

strength of the entropy regularization term. Note that
π(α; θ, Ωi) denotes the probability to sample some architec-
ture α from the policy/distribution π(·; θ, Ωi). This entropy
term enables CNAS to explore the unseen areas of previous
search stages and thus escape from local optima.

Inferring architectures. Once we obtain a good controller
model, we can use it to infer good architectures. Given K
candidate operations, we take the learned policy π(·; θ, ΩK)
obtained in the fnal stage, i.e., the one with the largest
search space, as the fnal policy to sample architectures.
Following (Zoph & Le, 2017; Pham et al., 2018), we frst
sample 10 architectures and then select the architecture with
the highest validation accuracy.

4.3. Operation Warmup

In CNAS, we gradually add new operations into the set of
candidate operations. However, the corresponding param-
eters of the new operation are randomly initialized while
the old operations have been extensively trained, leading
to severe unfairness issues among operations (Chu et al.,
2019). As a result, the architectures with the new operation
often yield very low rewards, making the controller tend not
to choose it in the following training process.

To address this issue, we propose an effective operation
warmup method. Specifcally, when we add a new operation,
we fx the controller model and only train the parameters of
the super network. To improve the fairness of operations,
we uniformly sample candidate architectures to train each
operation with equal probability (Chu et al., 2019). In this
way, the candidate architectures with the newly added opera-
tion achieve comparable performance with the existing ones.
With the operation warmup method, we make the search
process more stable and obtain signifcantly better search
performance (See results in Section 7.1).

5. More Discussions on CNAS
In this section, we conduct further analysis of the proposed
CNAS method. We frst investigate our advantages over the
existing NAS methods. Then, we discuss the differences
between CNAS and a related work PNAS.

5.1. Advantages of CNAS over the standard NAS

The major advantage lies in the proposed curriculum search
strategy. Specifcally, CNAS trains the controller in a small
search space in the early stage. Compared with the large
search space, we can easily obtain a good controller since
we can suffciently explore the small search space (e.g.,
|Ω| = 120 when K = 1). In this case, we do not need
to consider which operation should be chosen but learn an
optimal cell topology (i.e., node connection method). When
we gradually increase K, CNAS only needs to learn the

new concept (i.e., the new operation) to ft the larger search
space. More critically, we can take the previously learned
knowledge about which cell topology is good and explore
the subspace that shares similar topology in the larger space.
As a result, it is more likely to fnd better architectures
compared with the standard NAS method searched in a
fxed search space (See results in Section 6.1).

5.2. Differences from PNAS

A related work PNAS (Liu et al., 2018a) also conducts archi-
tecture search in a progressive manner. However, there exist
several major differences between our method and PNAS.
First, PNAS gradually increases the number of nodes to
conduct a progressive search. However, we analyze the size
of the search space and propose to gradually enlarge the
search space by introducing additional operations. Second,
PNAS exploits a heuristic search method that periodically
removes a large number of possible architectures from the
search space and thus limits the exploration ability. How-
ever, CNAS performs architecture search in the original
search space specifed by each stage, making it possible to
fnd potentially better architectures. Third, PNAS has to
train a large number of architectures until convergence to
learn a performance predictor, resulting in extremely high
search cost (e.g., 255 GPU days). However, CNAS exploits
the weight sharing technique (Pham et al., 2018) and yields
signifcantly lower search cost (See Table 1).

6. Experiments
We apply the proposed CNAS to train the controller model
on CIFAR-10 (Krizhevsky & Hinton, 2009). Then, we
evaluate the searched architectures on CIFAR-10 and Ima-
geNet (Deng et al., 2009). All the implementations are based
on PyTorch.2 We organize the experiments as follows. First,
to demonstrate the effectiveness of our proposed CNAS, we
compare the performance of the proposed CNAS with two
related variants. Second, we compare the performance of
the architectures searched by CNAS with state-of-the-art
image classifcation methods on CIFAR-10 and ImageNet.

Compared methods. To investigate the effect of the pro-
posed curriculum search strategy, we investigate and com-
pare the following methods: 1) Fixed-NAS: For each stage
of CNAS, we keep the search space fxed and train a con-
troller from scratch. Following the settings in (Liu et al.,
2019), we set the number of the nodes B to 7 (i.e., 4 inter-
mediate nodes) and the number of candidate operations K
to 8. 2) CNAS: We train the controller in a growing search
space by gradually adding new operations while keeping B
unchanged. 3) CNAS-Node: By fxing K, we gradually in-
crease B from 1 to 4. We also compare the proposed CNAS

2The code is available at https://github.com/guoyongcs/CNAS.

https://github.com/guoyongcs/CNAS

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

40 80 120 160 200 240 280 320
overall epoch

96.2

96.4

96.6

96.8

97.0

97.2

97.4

te
st

 a
cc

ur
ac

y
(%

)

Fixed-NAS
CNAS w/o Warmup
CNAS-Node
CNAS (Ours)

Figure 4. Performance comparisons of the architectures obtained
by different methods during the search process. All the models are
evaluated on the test set of CIFAR-10. Each point indicates the
average performance of the architectures searched over 5 indepen-
dent experiments in different stages.

with several state-of-the-art image classifcation methods,
such as NASNet (Zoph et al., 2018), AmoebaNet (Real et al.,
2019), PNAS (Liu et al., 2018a), ENAS (Pham et al., 2018),
DARTS (Liu et al., 2019), etc.

6.1. Demonstration of CNAS

To investigate our CNAS, we compare the performance of
the architectures searched in each stage with Fixed-NAS
and CNAS-Node. For a fair comparison, we train the con-
troller on CIFAR-10 using these three methods for the same
epochs, i.e., 320 epochs in total. We use the same opera-
tion order for both CNAS and Fixed-NAS (i.e., CNAS and
Fixed-NAS have the same search space in each stage). We
sample architectures at the end of each stage and train them
to convergence. All the architectures are limited to 3.8M
parameters in the evaluation. We show the comparisons of
different methods in different stages in Figure 4.

From Figure 4, both CNAS and Fixed-NAS architectures
obtain better performance as the search space increases.
However, our CNAS architectures consistently outperform
Fixed-NAS ones for all stages. This implies that directly
searching in a large search space (i.e., Fixed-NAS) is more
diffcult than searching in a progressively growing search
space (i.e., CNAS). Since our CNAS learns the controller in
a progressive manner, the knowledge learned in the smaller
search space will be transferred to the next training stage.
With the help of knowledge inherited from the previous
learning, CNAS fnds better architectures than Fixed-NAS.

Compared with CNAS-Node, the architectures found by
CNAS achieve better performance at the same epoch. As
for the largest search space, the searched architecture of
CNAS also yields signifcantly better performance than
CNAS-Node one (97.40% vs. 97.15%). Moreover, the

improvement of performance between the last two stages
in CNAS-Node becomes smaller. The reason is that the
search space is increasing more quickly with the addition of
nodes (See Figure 2), which introduces a large gap between
the last two stages. In contrast, the growth of the search
space is more smooth with the addition of the operation, the
gap between two adjacent stages of our proposed CNAS is
smaller than CNAS-Node. As a result, CNAS fnds better
architectures than CNAS-Node.

6.2. Evaluation on CIFAR-10

We frst search for the convolution cells with our proposed
CNAS on CIFAR-10 data set. Then, we build the fnal con-
volution networks by stacking the learned cells and evaluate
them on CIFAR-10 data set.

Training details. Following the setting in (Liu et al., 2019),
convolution cells have two types, namely the normal cell
and the reduction cell. Each cell contains 7 nodes, includ-
ing 2 input nodes, 4 intermediate nodes, and 1 output node.
The available operations between two nodes include 3 × 3
depthwise separable convolution, 5 × 5 depthwise separable
convolution, 3×3 max pooling, 3×3 average pooling, 3×3
dilated convolution, 5 × 5 dilated convolution, identity and
none. We force the frst added operation to have parameters
(e.g., convolution) for the reason that the sampled network
without parameters cannot be trained. We divide the offcial
training set of CIFAR-10 into two parts, 40% for training
the super network parameters and 60% for training the con-
troller parameters. We train the controller for 320 epochs in
total, with 40 epochs for each stage. Before adding opera-
tions at each stage, we perform the operation warmup for
20 epochs. More details can be found in the supplementary.

Evaluation details. The fnal convolution network is
stacked with 20 learned cells: 18 normal cells and 2 re-
duction cells. We set the initial number of the channels to
36. Following (Liu et al., 2019), we train the network for
600 epochs using the batch size of 96. We use an SGD op-
timizer with a weight decay of 3 × 10−4 and a momentum
of 0.9. The learning rate starts from 0.025 and follows the
cosine annealing strategy to a minimum of 0.001. We use
cutout (DeVries & Taylor, 2017) with a length of 16 for data
augmentation. We report the mean and standard deviation
of 10 independent experiments for our fnal convolution
network. More details can be found in the supplementary.

Comparisons with state-of-the-art methods. We com-
pare our CNAS with state-of-the-art methods in Table 1
and show the learned normal and reduction cells in Figure 5.
The architecture found by CNAS achieves the average test
accuracy of 97.40%, which outperforms all the considered
methods. By searching in the progressively growing search
space, our CNAS makes use of the knowledge inherited
rather than train from scratch. In this way, the architecture

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

Table 1. Comparisons with state-of-the-art models on CIFAR-10. We report the mean and standard deviation of the test accuracy over 10
independent experiments for different models.

Architecture Test Accuracy (%) Params (M) Search Cost (GPU days)
DenseNet-BC (Huang et al., 2017) 96.54 25.6 –
PyramidNet-BC (Han et al., 2017) 96.69 26.0 –

Random search baseline 96.71 ± 0.15 3.2 –
NASNet-A + cutout (Zoph et al., 2018) 97.35 3.3 1800

NASNet-B (Zoph et al., 2018) 96.27 2.6 1800
NASNet-C (Zoph et al., 2018) 96.41 3.1 1800

AmoebaNet-A + cutout (Real et al., 2019) 96.66 ± 0.06 3.2 3150
AmoebaNet-B + cutout (Real et al., 2019) 96.63 ± 0.04 2.8 3150

DSO-NAS (Zhang et al., 2018b) 97.05 3.0 1
Hierarchical Evo (Liu et al., 2018b) 96.25 ± 0.12 15.7 300

SNAS (Xie et al., 2019) 97.02 2.9 1.5
ENAS + cutout (Pham et al., 2018) 97.11 4.6 0.5

NAONet (Luo et al., 2018) 97.02 28.6 200
NAONet-WS (Luo et al., 2018) 96.47 2.5 0.3

GHN (Zhang et al., 2018a) 97.16 ± 0.07 5.7 0.8
PNAS + cutout (Liu et al., 2018a) 97.17 ± 0.07 3.2 225
DARTS + cutout (Liu et al., 2019) 97.24 ± 0.09 3.4 4
CARS + cutout (Yang et al., 2019) 97.38 3.6 0.4

CNAS + cutout 97.40 ± 0.06 3.7 0.3

-2

0

sep_conv_3x3 1

dil_sep_conv_3x3

-1
skip_connect

sep_conv_3x3

3sep_conv_3x3

2
sep_conv_3x3

out

max_pool_3x3

sep_conv_3x3

-2

0

dil_sep_conv_3x3

3

sep_conv_3x3

-1

skip_connect
1

skip_connect
2

sep_conv_3x3

dil_sep_conv_5x5

dil_sep_conv_3x3 out

sep_conv_3x3

(a) Normal cell. (b) Reduction cell.

Figure 5. The architecture of the convolutional cells found by CNAS. We conduct architecture search on CIFAR-10 and evaluate the
architecture on both CIFAR-10 and ImageNet datasets.

search problem becomes simpler. As a result, CNAS fnds
better architectures than other methods.

6.3. Evaluation on ImageNet

To verify the transferability of the learned cells on CIFAR-
10, we evaluate them on a large-scale image classifcation
data set ImageNet, which contains 1,000 classes with 128k
training images and 50k testing images.

Evaluation details. We stack 14 cells searched on CIFAR-
10 to build the fnal convolution network, with 12 normal
cells and 2 reduction cells. The initial number of the chan-
nels is set to 48. Following the settings in (Liu et al., 2019),
the network is trained for 250 epochs with a batch size of
256. We use an SGD optimizer with a weight decay of
3 × 10−5 . The momentum term is set to 0.9. The learn-
ing rate is initialized to 0.1 and we gradually decrease it

to zero. Following the setting in (Pham et al., 2018; Liu
et al., 2018a; 2019), we consider the mobile setting where
multiply-adds (Madds) is restricted to be less than 600M.
More details can be found in the supplementary.

Comparisons with state-of-the-art methods. We com-
pare the performance of the architecture found by CNAS
with several state-of-the-art models and report the results in
Table 2. Under the mobile setting, the architecture found
by CNAS achieves 75.4% top-1 accuracy and 92.6% top-5
accuracy, outperforming the human-designed architectures
and NAS based architectures. Moreover, compared with
NASNet-A, AmoebaNet-A, and PNAS, our CNAS architec-
ture also achieves competitive performance even with two
or three orders of magnitude fewer computation resources.
Compared with other heavyweight model, e.g., ResNet-18
and Inception-v1, our model yields better performance with
signifcantly less computation cost.

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

Table 2. Comparisons with state-of-the-art image classifers on ImageNet. “-” denotes the results that are not reported.

Architecture Test Accuracy (%)
Top-1 Top-5 #Params (M) #MAdds (M) Search Cost

(GPU days)
ResNet-18 (He et al., 2016) 69.8 89.1 11.7 1814 –

Inception-v1 (Szegedy et al., 2015) 69.8 89.9 6.6 1448 –
MobileNet (Howard et al., 2017) 70.6 89.5 4.2 569 –
NASNet-A (Zoph et al., 2018) 74.0 91.6 5.3 564 1800
NASNet-B (Zoph et al., 2018) 72.8 91.3 5.3 488 1800
NASNet-C (Zoph et al., 2018) 72.5 91.0 4.9 558 1800

AmoebaNet-A (Real et al., 2019) 74.5 92.0 5.1 555 3150
AmoebaNet-B (Real et al., 2019) 74.0 92.4 5.3 555 3150

GHN (Zhang et al., 2018a) 73.0 91.3 6.1 569 0.8
SNAS (Xie et al., 2019) 72.7 90.8 4.3 522 1.5

DARTS (Liu et al., 2019) 73.1 91.0 4.9 595 4
NAT-DARTS (Guo et al., 2019) 73.7 91.4 4.0 441 -

PNAS (Liu et al., 2018a) 73.5 91.4 5.1 588 255
MnasNet-92 (Tan et al., 2019) 74.8 92.0 4.4 - -

ProxylessNAS (Cai et al., 2019) 75.1 92.5 7.1 - 8.3
CARS (Yang et al., 2019) 75.2 92.5 5.1 591 0.4

CNAS 75.4 92.6 5.3 576 0.3

7. Further Experiments
We conduct two further experiments to investigate the effect
of operation warmup and different operation orders.

7.1. Effect of Operation Warmup

We investigate the effect of operation warmup on the search
performance of CNAS. For a fair comparison, we train
different controllers with the same number of epochs. From
Figure 4, without operation warmup, the controller tends to
fnd sub-optimal architectures and the search performance is
also very unstable during the training phase. When equipped
with the proposed operation warmup, the resultant controller
consistently outperforms that without operation warmup in
all training stages. These results demonstrate the necessity
and effectiveness of the proposed operation warmup.

7.2. Effect of Different Operation Orders

We compare the performance of the architectures searched
by CNAS with different operation orders. Since the search
space is gradually enlarged by adding operations, different
operation orders may correspond to different search spaces,
leading to different searched architectures. We repeat the
search experiment 5 times with the same settings except for
the orders of adding operations on CIFAR-10. We report the
mean accuracy of these architectures found by CNAS over
5 runs in Figure 4. CNAS achieves better mean accuracy
than Fixed-NAS with different operation orders. The exper-
imental results indicate the proposed CNAS is not sensitive
to the orders of the operations.

8. Conclusion
In this paper, we have proposed a Curriculum Neural Ar-
chitecture Search (CNAS) method to alleviate the training
diffculty incurred by the space explosion issue. To this
end, we propose a curriculum search strategy that breaks the
NAS problem into a series of simpler problems and solves
them in a progressive manner. Specifcally, we solve the
NAS problems by gradually enlarging the search spaces and
incorporating the learned knowledge to guide the search. To
construct these problems, we gradually introduce new oper-
ations into the search space. By inheriting the knowledge
learned from the smaller search spaces, CNAS can greatly
improve the search performance in the largest space. Exten-
sive experiments on CIFAR-10 and ImageNet demonstrate
the superiority of CNAS over existing methods.

Acknowledgements
This work was partially supported by the Key-Area Re-
search and Development Program of Guangdong Province
(2018B010107001), National Natural Science Foundation
of China (NSFC) 61836003 (key project), Guangdong
Project 2017ZT07X183, Guangdong Basic and Applied
Basic Research Foundation (Grant 2019B1515130001),
Guangdong Special Branch Plans Young Talent with Scien-
tifc and Technological Innovation (Grant 2016TQ03X445),
Guangzhou Science and Technology Planning Project
(Grant 201904010197), Fundamental Research Funds for
the Central Universities D2191240, and Tencent AI Lab
Rhino-Bird Focused Research Program (No. JR201902).

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In International Conference on
Machine Learning, pp. 41–48, 2009.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35
(8):1798–1828, 2013.

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. In
International Conference on Learning Representations,
2019.

Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., and Tan,
M. Adversarial learning with local coordinate coding.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 707–715, 2018.

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(4):834–848, 2018.

Chen, X., Zheng, Y., Zhao, P., Jiang, Z., Ma, W., and Huang,
J. A generalized locally linear factorization machine
with supervised variational encoding. IEEE Transactions
on Knowledge and Data Engineering, 32(6):1036–1049,
2019.

Cheng, A.-C., Lin, C. H., Juan, D.-C., Wei, W., and Sun,
M. Instanas: Instance-aware neural architecture search.
arXiv preprint arXiv:1811.10201, 2018.

Chu, X., Zhang, B., Xu, R., and Li, J. Fairnas: Rethinking
evaluation fairness of weight sharing neural architecture
search. arXiv preprint arXiv:1907.01845, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, 2009.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Gul¨ çehre, Ç . and Bengio, Y. Knowledge matters: Impor-
tance of prior information for optimization. The Journal
of Machine Learning Research, 17(1):226–257, 2016.

Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao,
P., and Huang, J. Nat: Neural architecture transformer
for accurate and compact architectures. In Advances in
Neural Information Processing Systems, pp. 737–748,
2019.

Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., and
Tan, M. Multi-way backpropagation for training compact
deep neural networks. Neural networks, 2020a.

Guo, Y., Chen, J., Wang, J., Chen, Q., Cao, J., Deng, Z., Xu,
Y., and Tan, M. Closed-loop matters: Dual regression net-
works for single image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5407–5416, 2020b.

Han, D., Kim, J., and Kim, J. Deep pyramidal residual
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hosseini, B., Montagne, R., and Hammer, B. Deep-aligned
convolutional neural network for skeleton-based action
recognition and segmentation. Data Science and Engi-
neering, pp. 126–139, 2020.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Effcient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2261–2269, 2017.

Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., and
Liu, W. Ccnet: Criss-cross attention for semantic seg-
mentation. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 603–612, 2019.

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. Varia-
tional deep embedding: An unsupervised and generative
approach to clustering. In Proceedings of the 26th In-
ternational Joint Conference on Artifcial Intelligence,
IJCAI’17, pp. 1965–1972, 2017.

Khan, F., Mutlu, B., and Zhu, J. How do humans teach:
On curriculum learning and teaching dimension. In Ad-
vances in Neural Information Processing Systems, pp.
1449–1457, 2011.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classifcation with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
pp. 1097–1105, 2012.

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Advances in Neural
Information Processing Systems, pp. 1189–1197, 2010.

Lian, D., Zheng, Y., Xu, Y., Lu, Y., Lin, L., Zhao, P., Huang,
J., and Gao, S. Towards fast adaptation of neural archi-
tectures with meta learning. In International Conference
on Learning Representations, 2020.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li,
L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K.
Progressive neural architecture search. In Proceedings of
the European Conference on Computer Vision, 2018a.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and
Kavukcuoglu, K. Hierarchical representations for ef-
fcient architecture search. In International Conference
on Learning Representations, 2018b.

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differen-
tiable Architecture Search. In International Conference
on Learning Representations, 2019.

Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J.,
Zhu, J., and Tan, M. Discrimination-aware network
pruning for deep model compression. arXiv preprint
arXiv:2001.01050, 2020.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural
architecture optimization. In Advances in Neural Infor-
mation Processing Systems, pp. 7827–7838, 2018.

Matiisen, T., Oliver, A., Cohen, T., and Schulman, J.
Teacher-student curriculum learning. IEEE Transactions
on Neural Networks and Learning Systems, 2019.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Effcient neural architecture search via parameter sharing.
In International Conference on Machine Learning, pp.
4092–4101, 2018.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifer architecture search. In
AAAI Conference on Artifcial Intelligence, volume 33,
pp. 4780–4789, 2019.

Shelhamer, E., Long, J., and Darrell, T. Fully convolutional
networks for semantic segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware

neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2820–2828, 2019.

Wang, Y., Gan, W., Yang, J., Wu, W., and Yan, J. Dynamic
curriculum learning for imbalanced data classifcation.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 5017–5026, 2019.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic
neural architecture search. In International Conference
on Learning Representations, 2019.

Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C.,
Tian, Q., and Xu, C. Cars: Continuous evolution
for effcient neural architecture search. arXiv preprint
arXiv:1909.04977, 2019.

Zeng, R., Huang, W., Tan, M., Rong, Y., Zhao, P., Huang, J.,
and Gan, C. Graph convolutional networks for temporal
action localization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 7094–7103,
2019.

Zhang, C., Ren, M., and Urtasun, R. Graph hypernetworks
for neural architecture search. In International Confer-
ence on Learning Representations, 2018a.

Zhang, D., Han, J., Zhao, L., and Meng, D. Leveraging prior-
knowledge for weakly supervised object detection under
a collaborative self-paced curriculum learning framework.
International Journal of Computer Vision, 127(4):363–
380, 2019.

Zhang, X., Huang, Z., and Wang, N. You only search once:
Single shot neural architecture search via direct sparse
optimization. arXiv preprint arXiv:1811.01567, 2018b.

Zheng, Y., Zemel, R. S., Zhang, Y.-J., and Larochelle, H. A
neural autoregressive approach to attention-based recog-
nition. International Journal of Computer Vision, 2015.

Zheng, Y., Tang, B., Ding, W., and Zhou, H. A neural
autoregressive approach to collaborative fltering. In Pro-
ceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning, 2016a.

Zheng, Y., Zhang, Y.-J., and Larochelle, H. A deep and
autoregressive approach for topic modeling of multimodal
data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):1056–1069, 2016b.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations, 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8697–8710, 2018.

