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Abstract 
Neural architecture search (NAS) has become an 
important approach to automatically fnd effective 
architectures. To cover all possible good archi-
tectures, we need to search in an extremely large 
search space with billions of candidate architec-
tures. More critically, given a large search space, 
we may face a very challenging issue of space 
explosion. However, due to the limitation of com-
putational resources, we can only sample a very 
small proportion of the architectures, which pro-
vides insuffcient information for the training. As 
a result, existing methods may often produce sub-
optimal architectures. To alleviate this issue, we 
propose a curriculum search method that starts 
from a small search space and gradually incorpo-
rates the learned knowledge to guide the search 
in a large space. With the proposed search strat-
egy, our Curriculum Neural Architecture Search 
(CNAS) method signifcantly improves the search 
effciency and fnds better architectures than ex-
isting NAS methods. Extensive experiments on 
CIFAR-10 and ImageNet demonstrate the effec-
tiveness of the proposed method. 

1. Introduction 
Deep neural networks (DNNs) have been producing state-
of-the-art results in many challenging tasks including im-
age classifcation (Krizhevsky et al., 2012; Liu et al., 2020; 
Zheng et al., 2015; Guo et al., 2020a), semantic segmenta-
tion (Shelhamer et al., 2017; Chen et al., 2018; Huang et al., 
2019), and many other areas (Zheng et al., 2016b;a; Jiang 

*Equal contribution . This work is done when Yong Guo works 
as an intern in Tencent AI Lab. 1School of Software Engineer-
ing, South China University of Technology 2Pazhou Laboratory 
3Weixin Group, Tencent 4Tencent AI Lab, Tencent 5Guangdong 
Key Laboratory of Big Data Analysis and Processing. Correspon-
dence to: Mingkui Tan <mingkuitan@scut.edu.cn>, Jian Chen 
<ellachen@scut.edu.cn>. 

Proceedings of the 37 th International Conference on Machine 
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s). 

architecture search space

Stage-3Stage-1 Stage-2

Standard NAS with 

fixed search space
NAS with curriculum search

search direction

Searched Architecture

(acc=97.40%, #params=3.66M)

Searched Architecture

(acc=97.10%, #params=3.99M)

searched architecture

initial sampled architectureadaptively evolved subspace

Figure 1. Comparisons of the search process between standard 
NAS methods and our proposed curriculum NAS (CNAS) method. 
By gradually refning the candidate subspace, CNAS performs 
much accurate architecture sampling, thus can signifcantly im-
prove the search effciency and fnd better architectures than stan-
dard NAS methods. 

et al., 2017; Chen et al., 2019; Zeng et al., 2019; Hosseini 
et al., 2020; Guo et al., 2020b; Cao et al., 2018). Besides 
designing DNNs manually, there is a growing interest in 
automatically designing effective architectures by neural ar-
chitecture search (NAS) methods (Zoph & Le, 2017; Pham 
et al., 2018). Existing studies show that the automatically 
searched architectures often outperform the manually de-
signed ones in both image classifcation tasks and language 
modeling tasks (Zoph et al., 2018; Lian et al., 2020). 

NAS methods seek to search for an optimal architecture in 
a predefned search space. To this end, existing methods 
have to explore the whole search space by sampling suff-
ciently many architectures. However, the search space is 
often extremely large (e.g., billions of candidate architec-
tures (Pham et al., 2018)), resulting in the space explosion 
issue. To be specifc, due to the limitation of computational 
resources, we can only sample a very small proportion of 
the architectures from the search space. Thus, we can only 
receive very limited information to guide the search process. 
As a result, NAS models become hard to train and often fnd 
sub-optimal architectures. 

To alleviate the space explosion issue, we seek to improve 
the search by conducting more accurate sampling, i.e., ex-
ploring the subspace that contains potentially better archi-
tectures. In this way, given limited resources to conduct 
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sampling, we can fnd good architectures with relatively 
high probability and thus improve the search performance. 
However, how to train NAS models to perform more accu-
rate sampling is still unknown. 

To address the above issues, we propose a novel curriculum 
search method to improve the search performance. Specif-
cally, we frst conduct the search in a relatively small space 
where suffcient exploration is possible. Then, we gradu-
ally enlarge the search space and use the previously learned 
knowledge to make the sampling more accurate in the larger 
search space. The key idea follows the basic concept of cur-
riculum learning that humans and animals can learn much 
better when they gradually learn new knowledge (Bengio 
et al., 2009; G¨ ¸ehre & Bengio, 2016).ulc 

Equipped with the curriculum search, we propose a Cur-
riculum Neural Architecture Search (CNAS) method. Our 
CNAS enlarges the search space by gradually increasing the 
number of candidate operations and exploits the previously 
learned knowledge to achieve accurate sampling. As shown 
in Figure 1, once we have found some good architectures 
in a small search space and gradually enlarge the space, it 
becomes more likely to fnd a candidate subspace (grey cir-
cle) that shares some common knowledge with the previous 
one but contains potentially better architectures. When we 
consider multiple stages to perform architecture search, the 
subspace would adaptively evolve along the search process. 
Based on the adaptively evolved subspace, CNAS is able 
to conduct more accurate sampling to fnd better architec-
tures in a large search space. Furthermore, to improve the 
training stability when we introduce a previously unseen op-
eration, we propose an operation warmup strategy to make 
all the operations relatively fair when sampling architectures. 
Extensive experiments demonstrate the superiority of our 
CNAS over existing methods. 

Our contributions are summarized as follows: 

• We propose a novel Curriculum Neural Architecture 
Search (CNAS) method to alleviate the training diff-
culties of the NAS problem incurred by the extremely 
large search space. To this end, we break the original 
NAS problem into a series of simpler problems and 
train the controller model in a progressive manner. 

• We propose a curriculum search method that gradu-
ally incorporates the knowledge learned from a small 
search space. To this end, we start from a search space 
with one operation and gradually add new operations. 
Thus, the previously learned knowledge about how to 
use a specifc operation can be effectively preserved. 

• Extensive experiments on several benchmark data sets 
show that the architectures found by our CNAS signif-
cantly outperform the architectures obtained by state-
of-the-art NAS methods. 

2. Related Work 
Neural architecture search. In the past few years, neural 
architecture search (NAS) has attracted considerable atten-
tion to automatically design effective architectures. Zoph 
& Le (2017) frst propose to learn a controller for an opti-
mal confguration of each convolution layer. However, it 
performs search for an entire network, leading to extremely 
large search space and very high search cost. To reduce the 
search space, NASNet (Zoph et al., 2018; Pham et al., 2018) 
proposes to search for the optimal neural cell rather than the 
whole network. Related to our method, Liu et al. (2018a) 
propose a PNAS method that gradually enlarges the search 
space and performs architecture search in a progressive man-
ner. Specifcally, PNAS picks the top K architectures in 
each stage and gradually adds nodes to progressively enlarge 
the search space. However, there are several limitations with 
PNAS. First, the unselected architectures as well as all the 
architectures that are obtained by adding additional nodes 
would be ignored. As a result, it greatly limit the possible 
search space to fnd good architectures in the next stage. 
Second, PNAS has to train a large number of architectures 
until convergence to learn a performance predictor, resulting 
in extremely high search cost (i.e., 255 GPU days). 

Curriculum learning. Bengio et al. (2009) propose a 
new learning strategy called curriculum learning, which 
improves the generalization ability of model and accelerates 
the convergence of the training process. Recently, many ef-
forts have been made to design effective curriculum learning 
methods (Wang et al., 2019; Zhang et al., 2019). Kumar et al. 
(2010) propose a self-paced learning algorithm that selects 
training samples in a meaningful order. Khan et al. (2011) 
provide evidence about the consistency between curriculum 
learning and the learning principles of human. Bengio et al. 
(2013) further present insightful explorations for the ratio-
nality of curriculum learning. Matiisen et al. (2019) build a 
framework that produces Teacher-Student curriculum learn-
ing. Moreover, curriculum learning has been applied to 
NAS (Cheng et al., 2018; Zoph & Le, 2017). Cheng et al. 
(2018) propose an InstaNAS method that uses a dynamic re-
ward function to gradually increase task diffculty, and Zoph 
& Le (2017) propose to gradually increase the number of 
layers. Unlike these methods, we construct simpler prob-
lems from a new perspective of search space in the context 
of the NAS problem. 

3. Preliminary 
For convenience, we revisit the Neural Architecture Search 
(NAS) problem. Reinforcement Learning (RL) based NAS 
methods seek to learn a controller to produce candidate 
architectures. Let θ be the trainable parameters and Ω be 
the search space. A controller can produce a candidate 
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architecture α as follows:

α ∼ π(α; θ,Ω), (1)

where π is a policy learned by the controller, i.e., a dis-
tribution of candidate architectures. In practice, the policy
learned by the controller can be either the discrete form (e.g.,
NAS (Zoph & Le, 2017) and ENAS (Pham et al., 2018)), or
the differentiable form like DARTS (Liu et al., 2019).

To measure the performance of an architecture, we have to
train a model built with the architecture until convergence.
Let L be the loss function on training data. Given an archi-
tecture α, the optimal parameters w∗(α) can be obtained
by w∗(α) = arg minw L (α,w). Then, one can measure
the performance of α by some metric R (α,w∗(α)), e.g.,
the accuracy on validation data. Following the settings of
NAS (Zoph & Le, 2017) and ENAS (Pham et al., 2018), we
use Reinforcement Learning (RL) and take the performance
R(·) as the “reward” to train the controller model.

The goal of RL-based NAS is to find an optimal policy
by maximizing the expectation of the reward R(α,w∗(α)).
Thus, the NAS problem can be formulated as a bilevel opti-
mization problem:

max
θ

Eα∼π(α;θ,Ω)R (α,w∗(α)) ,

s.t. w∗(α) = arg min
w
L (α,w) .

(2)

To solve this problem, one can update θ and w in an alterna-
tive manner (Zoph & Le, 2017; Pham et al., 2018).

4. Curriculum Neural Architecture Search
For NAS methods, the huge search space is often the main
bottleneck to the architecture search performance. In gen-
eral, a small space often leads to sub-optimal architectures
with inferior performance, but a large search space would
incur severe space explosion issue and may even make the
learning task infeasible. Specifically, since we can only
explore a very small proportion of architectures to train the
controller, it is very difficult to learn a NAS model to find
good architectures in a large search space.

In this paper, we seek to improve NAS by alleviating the
space explosion issue. We first analyze the size of the search
space. Then, we propose a curriculum search strategy to
break the original NAS problem into a series of simpler
problems and then we solve each problem in a progressive
manner. For convenience, we call our method Curriculum
Neural Architecture Search (CNAS). An illustrative compar-
isons between the standard NAS methods and the proposed
CNAS can be found in Figure 1.
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Figure 2. Comparisons of different search spaces on one cell archi-
tecture. Following (Liu et al., 2019), we consider a cell architecture
with 4 intermediate nodes and 8 candidate operations.

4.1. Search Space Size Analysis

We consider learning a generic computational cell because
searching a good architecture for an entire network is very
computationally expensive (Zoph et al., 2018). In NAS
methods (Zoph & Le, 2017; Pham et al., 2018; Liu et al.,
2019), a cell-based architecture α can be represented by
a directed acyclic graph (DAG), i.e., α = (V, E). Here,
V is the set of nodes that represent the feature maps in a
neural network. E is the set of the edges that represent some
computational operations (e.g., convolution or pooling). For
convenience, we denote the numbers of nodes by B.

Following (Liu et al., 2019), a DAG contains two input
nodes, B − 3 intermediate nodes, and one output node. The
input nodes denote the outputs of the nearest two cells in
front of the current one. The output node concatenates the
outputs of all the intermediates to produce a final output of
the cell. In the DAG, each intermediate node also takes two
previous nodes in this cell as inputs. In this sense, there are
2× (B− 3) edges in the DAG and we will determine which
operation should be applied to each of them.

Given B nodes and K candidate operations, the size of the
search space Ω can be computed by1

|Ω| = K2(B−3)
(
(B − 2)!

)2
. (3)

From Eqn. (3), the search space can be extremely large when
we have a large B or K. For example, ENAS (Pham et al.,
2018) has a search space of |Ω| ≈ 5×1012 with B=8 and
K=5, and DARTS (Liu et al., 2019) has a search space of
|Ω| ≈ 2×1011 with B=7 and K=8. In the extremely large
search space, we can only sample a very limited number
of architectures. As a result, the feedback/reward from
the sampled architectures is insufficient, making it hard to
train a good controller. As a result, the search process may
severely suffer from the space explosion issue.

1More analysis of search space size is put in supplementary.
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Figure 3. An overview of the search space used by CNAS. We 
show the candidate operations of the super network in different 
stages. The edges with different colors denote different operations. 
For simplicity, we omit the output node in this fgure. 

4.2. NAS with Curriculum Search 

To alleviate the space explosion issue, we seek to improve 
the search process by providing more powerful information 
to improve the quality of architecture sampling. To this end, 
we exploit the idea of curriculum learning that humans often 
learn much better when they gradually learn new knowl-
edge/concepts. Specifcally, we propose to break the NAS 
problem into a series of simpler problems. Since the size 
of the search space is an indicator of the diffculty level of 
the NAS problem, we may change the size of search space 
to construct the problems with different diffculty levels. In 
this sense, we can cast the training of NAS models into 
a multi-stage process to gradually incorporate previously 
learned knowledge to fnd better architectures. 

As mentioned in Section 4.1, the size of search space |Ω|
depends on the number of nodes B and the number of candi-
date operations K. In this sense, we can adjust either B or 
K to obtain the search spaces with different sizes. To fnd a 
better choice between these two methods, we compare the 
search space w.r.t. different B and K. Following (Pham 
et al., 2018; Liu et al., 2019), we adopt a widely used setting 
with B=7 nodes (i.e., 4 intermediate nodes) and K=8 can-
didate operations. In this case, we investigate the effect of 
increasing the number of nodes and operations on the size 
of the search space in Figure 2. From Figure 2 and Eqn. (3), 
increasing node would make the size of search space grow 
much faster than increasing operation. As a result, increas-
ing node would introduce a non-negligible gap between 
adjacent stages. Thus, the training diffculty incurred by 
the extremely increased search space is still severe. On the 
contrary, increasing operation from 1 to K provides a more 
slow growth of search space, making progressive training 
possible (See the detailed comparisons in Section 6.1). 

Thus, we seek to enlarge the search space by gradually 
increasing the number of candidate operations. Specifcally, 
we start from the search space with a single operation and 

Algorithm 1 Training method for CNAS. 
Require: The operation sequence O, learning rate η, the number 

of the iterations for operation warmup M , the uniform distri-
bution of architectures p(·), the controller’s policy π(·), super 
network parameters w, controller parameters θ. 

1: Initialize w and θ, Ω0 = Ø. 
2: for i=1 to |O| do 
3: Enlarge Ωi by adding Oi to the set of candidate operations; 
4: // Operation warmup 
5: for j=1 to M do 
6: Sample α ∼ p(α; Ωi); 
7: w ← w − ηrw L(α, w); 
8: end for 
9: while not convergent do 

10: // Update θ by maximizing the reward 
11: for each iteration on validation data do 
12: Sample α ∼ π(α; θ, Ωi); 
13: Update the controller by ascending its gradient: 
14: R(α, w)rθ log π(α; θ, Ωi)+λH(π(·; θ, Ωi)); 
15: end for 
16: // Update w by minimizing the training loss 
17: for each iteration on training data do 
18: Sample α ∼ π(α; θ, Ωi); 
19: w ← w − ηrw L(α, w). 
20: end for 
21: end while 
22: end for 

then add a new operation to the set of candidate operations 
in each stage. To accelerate the search process, we adopt 
the parameter sharing (Pham et al., 2018) technique that 
makes all the child networks share their parameters in a 
super network. For clarity, we show the super network with 
the progressively growing search space in Figure 3. Without 
loss of generality, we add the operations in a random order 
(See discussions about the order in Section 7.2). 

Curriculum training scheme. Based on the curriculum 
search strategy, we can obtain a series of problems with 
different diffculty levels. However, how to effectively solve 
these problems to improve the training of the controller 
model still remains a question. To address this issue, we 
propose a curriculum training algorithm and show the details 
in Algorithm 1. Specifcally, we progressively train the 
controller to solve the problems with different search spaces. 
During the training, we gradually increase the number of 
operations from 1 to K. Thus, the whole training process 
can be divided into K stages. To encourage the diversity 
when sampling architectures, we introduce an entropy term 
into the objective. Let Ωi be the search space of the i-th 
stage. The training objective in the i-th stage becomes 

max Eα∼π(·;θ,Ωi) [R (α, w ∗ (α))] + λH (π (·; θ, Ωi)) , 
θ 

s.t. w ∗ (α) = arg min L (α, w) , 
w 

(4) 
where π(·; θ, Ωi) denotes the learned policy w.r.t. Ωi, H(·) 
evaluates the entropy of the policy, and λ controls the 
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strength of the entropy regularization term. Note that 
π(α; θ, Ωi) denotes the probability to sample some architec-
ture α from the policy/distribution π(·; θ, Ωi). This entropy 
term enables CNAS to explore the unseen areas of previous 
search stages and thus escape from local optima. 

Inferring architectures. Once we obtain a good controller 
model, we can use it to infer good architectures. Given K 
candidate operations, we take the learned policy π(·; θ, ΩK ) 
obtained in the fnal stage, i.e., the one with the largest 
search space, as the fnal policy to sample architectures. 
Following (Zoph & Le, 2017; Pham et al., 2018), we frst 
sample 10 architectures and then select the architecture with 
the highest validation accuracy. 

4.3. Operation Warmup 

In CNAS, we gradually add new operations into the set of 
candidate operations. However, the corresponding param-
eters of the new operation are randomly initialized while 
the old operations have been extensively trained, leading 
to severe unfairness issues among operations (Chu et al., 
2019). As a result, the architectures with the new operation 
often yield very low rewards, making the controller tend not 
to choose it in the following training process. 

To address this issue, we propose an effective operation 
warmup method. Specifcally, when we add a new operation, 
we fx the controller model and only train the parameters of 
the super network. To improve the fairness of operations, 
we uniformly sample candidate architectures to train each 
operation with equal probability (Chu et al., 2019). In this 
way, the candidate architectures with the newly added opera-
tion achieve comparable performance with the existing ones. 
With the operation warmup method, we make the search 
process more stable and obtain signifcantly better search 
performance (See results in Section 7.1). 

5. More Discussions on CNAS 
In this section, we conduct further analysis of the proposed 
CNAS method. We frst investigate our advantages over the 
existing NAS methods. Then, we discuss the differences 
between CNAS and a related work PNAS. 

5.1. Advantages of CNAS over the standard NAS 

The major advantage lies in the proposed curriculum search 
strategy. Specifcally, CNAS trains the controller in a small 
search space in the early stage. Compared with the large 
search space, we can easily obtain a good controller since 
we can suffciently explore the small search space (e.g., 
|Ω| = 120 when K = 1). In this case, we do not need 
to consider which operation should be chosen but learn an 
optimal cell topology (i.e., node connection method). When 
we gradually increase K, CNAS only needs to learn the 

new concept (i.e., the new operation) to ft the larger search 
space. More critically, we can take the previously learned 
knowledge about which cell topology is good and explore 
the subspace that shares similar topology in the larger space. 
As a result, it is more likely to fnd better architectures 
compared with the standard NAS method searched in a 
fxed search space (See results in Section 6.1). 

5.2. Differences from PNAS 

A related work PNAS (Liu et al., 2018a) also conducts archi-
tecture search in a progressive manner. However, there exist 
several major differences between our method and PNAS. 
First, PNAS gradually increases the number of nodes to 
conduct a progressive search. However, we analyze the size 
of the search space and propose to gradually enlarge the 
search space by introducing additional operations. Second, 
PNAS exploits a heuristic search method that periodically 
removes a large number of possible architectures from the 
search space and thus limits the exploration ability. How-
ever, CNAS performs architecture search in the original 
search space specifed by each stage, making it possible to 
fnd potentially better architectures. Third, PNAS has to 
train a large number of architectures until convergence to 
learn a performance predictor, resulting in extremely high 
search cost (e.g., 255 GPU days). However, CNAS exploits 
the weight sharing technique (Pham et al., 2018) and yields 
signifcantly lower search cost (See Table 1). 

6. Experiments 
We apply the proposed CNAS to train the controller model 
on CIFAR-10 (Krizhevsky & Hinton, 2009). Then, we 
evaluate the searched architectures on CIFAR-10 and Ima-
geNet (Deng et al., 2009). All the implementations are based 
on PyTorch.2 We organize the experiments as follows. First, 
to demonstrate the effectiveness of our proposed CNAS, we 
compare the performance of the proposed CNAS with two 
related variants. Second, we compare the performance of 
the architectures searched by CNAS with state-of-the-art 
image classifcation methods on CIFAR-10 and ImageNet. 

Compared methods. To investigate the effect of the pro-
posed curriculum search strategy, we investigate and com-
pare the following methods: 1) Fixed-NAS: For each stage 
of CNAS, we keep the search space fxed and train a con-
troller from scratch. Following the settings in (Liu et al., 
2019), we set the number of the nodes B to 7 (i.e., 4 inter-
mediate nodes) and the number of candidate operations K 
to 8. 2) CNAS: We train the controller in a growing search 
space by gradually adding new operations while keeping B 
unchanged. 3) CNAS-Node: By fxing K, we gradually in-
crease B from 1 to 4. We also compare the proposed CNAS 

2The code is available at https://github.com/guoyongcs/CNAS. 

https://github.com/guoyongcs/CNAS
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Figure 4. Performance comparisons of the architectures obtained 
by different methods during the search process. All the models are 
evaluated on the test set of CIFAR-10. Each point indicates the 
average performance of the architectures searched over 5 indepen-
dent experiments in different stages. 

with several state-of-the-art image classifcation methods, 
such as NASNet (Zoph et al., 2018), AmoebaNet (Real et al., 
2019), PNAS (Liu et al., 2018a), ENAS (Pham et al., 2018), 
DARTS (Liu et al., 2019), etc. 

6.1. Demonstration of CNAS 

To investigate our CNAS, we compare the performance of 
the architectures searched in each stage with Fixed-NAS 
and CNAS-Node. For a fair comparison, we train the con-
troller on CIFAR-10 using these three methods for the same 
epochs, i.e., 320 epochs in total. We use the same opera-
tion order for both CNAS and Fixed-NAS (i.e., CNAS and 
Fixed-NAS have the same search space in each stage). We 
sample architectures at the end of each stage and train them 
to convergence. All the architectures are limited to 3.8M 
parameters in the evaluation. We show the comparisons of 
different methods in different stages in Figure 4. 

From Figure 4, both CNAS and Fixed-NAS architectures 
obtain better performance as the search space increases. 
However, our CNAS architectures consistently outperform 
Fixed-NAS ones for all stages. This implies that directly 
searching in a large search space (i.e., Fixed-NAS) is more 
diffcult than searching in a progressively growing search 
space (i.e., CNAS). Since our CNAS learns the controller in 
a progressive manner, the knowledge learned in the smaller 
search space will be transferred to the next training stage. 
With the help of knowledge inherited from the previous 
learning, CNAS fnds better architectures than Fixed-NAS. 

Compared with CNAS-Node, the architectures found by 
CNAS achieve better performance at the same epoch. As 
for the largest search space, the searched architecture of 
CNAS also yields signifcantly better performance than 
CNAS-Node one (97.40% vs. 97.15%). Moreover, the 

improvement of performance between the last two stages 
in CNAS-Node becomes smaller. The reason is that the 
search space is increasing more quickly with the addition of 
nodes (See Figure 2), which introduces a large gap between 
the last two stages. In contrast, the growth of the search 
space is more smooth with the addition of the operation, the 
gap between two adjacent stages of our proposed CNAS is 
smaller than CNAS-Node. As a result, CNAS fnds better 
architectures than CNAS-Node. 

6.2. Evaluation on CIFAR-10 

We frst search for the convolution cells with our proposed 
CNAS on CIFAR-10 data set. Then, we build the fnal con-
volution networks by stacking the learned cells and evaluate 
them on CIFAR-10 data set. 

Training details. Following the setting in (Liu et al., 2019), 
convolution cells have two types, namely the normal cell 
and the reduction cell. Each cell contains 7 nodes, includ-
ing 2 input nodes, 4 intermediate nodes, and 1 output node. 
The available operations between two nodes include 3 × 3 
depthwise separable convolution, 5 × 5 depthwise separable 
convolution, 3×3 max pooling, 3×3 average pooling, 3×3 
dilated convolution, 5 × 5 dilated convolution, identity and 
none. We force the frst added operation to have parameters 
(e.g., convolution) for the reason that the sampled network 
without parameters cannot be trained. We divide the offcial 
training set of CIFAR-10 into two parts, 40% for training 
the super network parameters and 60% for training the con-
troller parameters. We train the controller for 320 epochs in 
total, with 40 epochs for each stage. Before adding opera-
tions at each stage, we perform the operation warmup for 
20 epochs. More details can be found in the supplementary. 

Evaluation details. The fnal convolution network is 
stacked with 20 learned cells: 18 normal cells and 2 re-
duction cells. We set the initial number of the channels to 
36. Following (Liu et al., 2019), we train the network for 
600 epochs using the batch size of 96. We use an SGD op-
timizer with a weight decay of 3 × 10−4 and a momentum 
of 0.9. The learning rate starts from 0.025 and follows the 
cosine annealing strategy to a minimum of 0.001. We use 
cutout (DeVries & Taylor, 2017) with a length of 16 for data 
augmentation. We report the mean and standard deviation 
of 10 independent experiments for our fnal convolution 
network. More details can be found in the supplementary. 

Comparisons with state-of-the-art methods. We com-
pare our CNAS with state-of-the-art methods in Table 1 
and show the learned normal and reduction cells in Figure 5. 
The architecture found by CNAS achieves the average test 
accuracy of 97.40%, which outperforms all the considered 
methods. By searching in the progressively growing search 
space, our CNAS makes use of the knowledge inherited 
rather than train from scratch. In this way, the architecture 
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Table 1. Comparisons with state-of-the-art models on CIFAR-10. We report the mean and standard deviation of the test accuracy over 10 
independent experiments for different models. 

Architecture Test Accuracy (%) Params (M) Search Cost (GPU days) 
DenseNet-BC (Huang et al., 2017) 96.54 25.6 – 
PyramidNet-BC (Han et al., 2017) 96.69 26.0 – 

Random search baseline 96.71 ± 0.15 3.2 – 
NASNet-A + cutout (Zoph et al., 2018) 97.35 3.3 1800 

NASNet-B (Zoph et al., 2018) 96.27 2.6 1800 
NASNet-C (Zoph et al., 2018) 96.41 3.1 1800 

AmoebaNet-A + cutout (Real et al., 2019) 96.66 ± 0.06 3.2 3150 
AmoebaNet-B + cutout (Real et al., 2019) 96.63 ± 0.04 2.8 3150 

DSO-NAS (Zhang et al., 2018b) 97.05 3.0 1 
Hierarchical Evo (Liu et al., 2018b) 96.25 ± 0.12 15.7 300 

SNAS (Xie et al., 2019) 97.02 2.9 1.5 
ENAS + cutout (Pham et al., 2018) 97.11 4.6 0.5 

NAONet (Luo et al., 2018) 97.02 28.6 200 
NAONet-WS (Luo et al., 2018) 96.47 2.5 0.3 

GHN (Zhang et al., 2018a) 97.16 ± 0.07 5.7 0.8 
PNAS + cutout (Liu et al., 2018a) 97.17 ± 0.07 3.2 225 
DARTS + cutout (Liu et al., 2019) 97.24 ± 0.09 3.4 4 
CARS + cutout (Yang et al., 2019) 97.38 3.6 0.4 

CNAS + cutout 97.40 ± 0.06 3.7 0.3 
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Figure 5. The architecture of the convolutional cells found by CNAS. We conduct architecture search on CIFAR-10 and evaluate the 
architecture on both CIFAR-10 and ImageNet datasets. 

search problem becomes simpler. As a result, CNAS fnds 
better architectures than other methods. 

6.3. Evaluation on ImageNet 

To verify the transferability of the learned cells on CIFAR-
10, we evaluate them on a large-scale image classifcation 
data set ImageNet, which contains 1,000 classes with 128k 
training images and 50k testing images. 

Evaluation details. We stack 14 cells searched on CIFAR-
10 to build the fnal convolution network, with 12 normal 
cells and 2 reduction cells. The initial number of the chan-
nels is set to 48. Following the settings in (Liu et al., 2019), 
the network is trained for 250 epochs with a batch size of 
256. We use an SGD optimizer with a weight decay of 
3 × 10−5 . The momentum term is set to 0.9. The learn-
ing rate is initialized to 0.1 and we gradually decrease it 

to zero. Following the setting in (Pham et al., 2018; Liu 
et al., 2018a; 2019), we consider the mobile setting where 
multiply-adds (Madds) is restricted to be less than 600M. 
More details can be found in the supplementary. 

Comparisons with state-of-the-art methods. We com-
pare the performance of the architecture found by CNAS 
with several state-of-the-art models and report the results in 
Table 2. Under the mobile setting, the architecture found 
by CNAS achieves 75.4% top-1 accuracy and 92.6% top-5 
accuracy, outperforming the human-designed architectures 
and NAS based architectures. Moreover, compared with 
NASNet-A, AmoebaNet-A, and PNAS, our CNAS architec-
ture also achieves competitive performance even with two 
or three orders of magnitude fewer computation resources. 
Compared with other heavyweight model, e.g., ResNet-18 
and Inception-v1, our model yields better performance with 
signifcantly less computation cost. 
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Table 2. Comparisons with state-of-the-art image classifers on ImageNet. “-” denotes the results that are not reported. 

Architecture Test Accuracy (%) 
Top-1 Top-5 #Params (M) #MAdds (M) Search Cost 

(GPU days) 
ResNet-18 (He et al., 2016) 69.8 89.1 11.7 1814 – 

Inception-v1 (Szegedy et al., 2015) 69.8 89.9 6.6 1448 – 
MobileNet (Howard et al., 2017) 70.6 89.5 4.2 569 – 
NASNet-A (Zoph et al., 2018) 74.0 91.6 5.3 564 1800 
NASNet-B (Zoph et al., 2018) 72.8 91.3 5.3 488 1800 
NASNet-C (Zoph et al., 2018) 72.5 91.0 4.9 558 1800 

AmoebaNet-A (Real et al., 2019) 74.5 92.0 5.1 555 3150 
AmoebaNet-B (Real et al., 2019) 74.0 92.4 5.3 555 3150 

GHN (Zhang et al., 2018a) 73.0 91.3 6.1 569 0.8 
SNAS (Xie et al., 2019) 72.7 90.8 4.3 522 1.5 

DARTS (Liu et al., 2019) 73.1 91.0 4.9 595 4 
NAT-DARTS (Guo et al., 2019) 73.7 91.4 4.0 441 -

PNAS (Liu et al., 2018a) 73.5 91.4 5.1 588 255 
MnasNet-92 (Tan et al., 2019) 74.8 92.0 4.4 - -

ProxylessNAS (Cai et al., 2019) 75.1 92.5 7.1 - 8.3 
CARS (Yang et al., 2019) 75.2 92.5 5.1 591 0.4 

CNAS 75.4 92.6 5.3 576 0.3 

7. Further Experiments 
We conduct two further experiments to investigate the effect 
of operation warmup and different operation orders. 

7.1. Effect of Operation Warmup 

We investigate the effect of operation warmup on the search 
performance of CNAS. For a fair comparison, we train 
different controllers with the same number of epochs. From 
Figure 4, without operation warmup, the controller tends to 
fnd sub-optimal architectures and the search performance is 
also very unstable during the training phase. When equipped 
with the proposed operation warmup, the resultant controller 
consistently outperforms that without operation warmup in 
all training stages. These results demonstrate the necessity 
and effectiveness of the proposed operation warmup. 

7.2. Effect of Different Operation Orders 

We compare the performance of the architectures searched 
by CNAS with different operation orders. Since the search 
space is gradually enlarged by adding operations, different 
operation orders may correspond to different search spaces, 
leading to different searched architectures. We repeat the 
search experiment 5 times with the same settings except for 
the orders of adding operations on CIFAR-10. We report the 
mean accuracy of these architectures found by CNAS over 
5 runs in Figure 4. CNAS achieves better mean accuracy 
than Fixed-NAS with different operation orders. The exper-
imental results indicate the proposed CNAS is not sensitive 
to the orders of the operations. 

8. Conclusion 
In this paper, we have proposed a Curriculum Neural Ar-
chitecture Search (CNAS) method to alleviate the training 
diffculty incurred by the space explosion issue. To this 
end, we propose a curriculum search strategy that breaks the 
NAS problem into a series of simpler problems and solves 
them in a progressive manner. Specifcally, we solve the 
NAS problems by gradually enlarging the search spaces and 
incorporating the learned knowledge to guide the search. To 
construct these problems, we gradually introduce new oper-
ations into the search space. By inheriting the knowledge 
learned from the smaller search spaces, CNAS can greatly 
improve the search performance in the largest space. Exten-
sive experiments on CIFAR-10 and ImageNet demonstrate 
the superiority of CNAS over existing methods. 
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