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a b s t r a c t

Convolutional Neural Networks (CNNs) have achieved great success due to the powerful feature
learning ability of convolution layers. Specifically, the standard convolution traverses the input
images/features using a sliding window scheme to extract features. However, not all the windows
contribute equally to the prediction results of CNNs. In practice, the convolutional operation on some
of the windows (e.g., smooth windows that contain very similar pixels) can be very redundant and may
introduce noises into the computation. Such redundancy may not only deteriorate the performance
but also incur the unnecessary computational cost. Thus, it is important to reduce the computational
redundancy of convolution to improve the performance. To this end, we propose a Content-aware
Convolution (CAC) that automatically detects the smooth windows and applies a 1 ×1 convolutional
kernel to replace the original large kernel. In this sense, we are able to effectively avoid the redundant
computation on similar pixels. By replacing the standard convolution in CNNs with our CAC, the
resultant models yield significantly better performance and lower computational cost than the baseline
models with the standard convolution. More critically, we are able to dynamically allocate suitable
computation resources according to the data smoothness of different images, making it possible for
content-aware computation. Extensive experiments on various computer vision tasks demonstrate the
superiority of our method over existing methods.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, convolutional neural networks (CNNs) have achieved
emarkable performance in many computer vision tasks, includ-
ng image classification (Guo et al., 2020; He, Zhang, Ren, & Sun,
016), face recognition (Ozawa, Toh, Abe, Pang, & Kasabov, 2005;
chroff, Kalenichenko, & Philbin, 2015; Sun, Wang, & Tang, 2015),
emantic segmentation (Ibtehaz & Rahman, 2020; Liu et al., 2020;
helhamer, Long, & Darrell, 2017), and object detection (Ren,
e, Girshick, & Sun, 2017; Wang, Dai, Cai, Sun, & Chen, 2018).
oreover, deep CNNs have also become the workhorse of many
ther tasks and real-world applications beyond computer vision,
uch as speech recognition (Schrauwen, D’Haene, Verstraeten, &
an Campenhout, 2008; Skowronski & Harris, 2007) and natural
anguage processing (Duch, Matykiewicz, & Pestian, 2008; Gross
Murthy, 2014).
One of the key factors behind the success of CNNs lies in the

owerful feature learning ability of convolution layers. Typically,
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the standard convolution transforms the input images/features
into a set of windows and exploits a sliding window manner to
extract features over them (Burrus & Parks, 1985). However, not
all the windows contribute equally to the prediction results of
CNNs. As shown in Fig. 1, the input images/features often contain
a lot of smooth windows that consist of very similar pixels.
These windows may contain very limited information about the
data (Bar-Hillel & Weinshall, 2008; Fergus, Perona, & Zisserman,
2003) since a similar pattern may also appear in the surrounding
areas. As a result, the computation on smooth windows may be
very redundant. More critically, performing convolution on these
windows may also introduce noises into the computation and
thus deteriorate the performance (see results in Tables 1 and 2).
Thus, it is important and necessary to reduce the computational
redundancy of convolution to improve the performance.

Regarding this issue, existing methods improve the convo-
lutional operation by reducing the redundant communications
among different channels of feature maps (Chollet, 2017;
Krizhevsky, Sutskever, & Hinton, 2012; Sifre & Mallat, 2014) or
reducing the spatial size of some of the redundant channels (Chen
et al., 2019). Specifically, group convolution (Krizhevsky et al.,
2012) and depthwise separable convolution (Chollet, 2017; Sifre
& Mallat, 2014) divide the channels of feature maps into mul-
tiple groups and perform convolution independently over each
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roup. Recently, Chen et al. propose the Octave Convolution (Oct-
onv) (Chen et al., 2019) method, which downscales the feature
aps in some redundant channels into smaller sizes to reduce

he computational cost. However, these methods only focus on
he redundancy inside the channels of feature maps but ignore
he spatial redundancy of the pixels in each window. Moreover,
xisting methods perform the same computation on the samples
ith different spatial redundancy, which makes the prediction
ot optimal and also very inefficient.
In this paper, we seek to reduce the computational redun-

ancy on smooth windows to improve the performance of con-
olution. To this end, we propose a Content-aware Convolution
CAC) that uses a 1 × 1 convolution to replace the computation
f original k × k convolution on smooth windows. In this sense,
e are able to effectively avoid the redundant computation to

mprove the feature learning ability of convolution. To obtain the
eights for the 1 × 1 convolutional kernels, we spatially aggre-
ating the k× k kernel by summing up all the kernel parameters
see detailed analysis in Section 4.2). In order to automatically
etect the smooth windows, we propose an effective training
ethod that seeks for a trade-off between model performance
nd computational cost. More critically, CAC dynamically allo-
ates computation resources for different samples based on the
moothness of their contents. Therefore, we are able to perform
ontent-aware computation. In practice, our CAC models yield
ignificantly better performance and lower computational cost
han the models with the standard convolution. Extensive ex-
eriments on different computer vision tasks demonstrate the
uperiority of our method over existing methods.
In this paper, we make the following contributions.

• We propose a Content-aware Convolution (CAC) method
that replaces the original k × k kernel with a 1 × 1 kernel
on the smooth windows to improve the performance of
convolution. With CAC, we are able to effectively reduce the
computational redundancy of convolution and significantly
improve the performance.

• We propose an effective training method to automatically
detect the smooth windows for each layer. To achieve this
goal, we solve a multi-objective optimization problem to
find a trade-off between model performance and computa-
tional cost.

• Equipped with CAC, the resultant models achieve content-
aware computation by dynamically allocating computation
resources to different samples according to the data smooth-
ness. Extensive experiments on different computer vision
tasks demonstrate the effectiveness of the proposed method.

. Related work

Recently, much effort has been made to reduce the redun-
ancy of deep networks, including channel pruning, network
uantization, and energy-efficient model design.

.1. Channel pruning

Channel pruning is one of the predominant approaches for
eep network compression. Li, Kadav, Durdanovic, Samet and
raf (2017) measure the importance of different channels by
omputing the sum of absolute values of weights to conduct
hannel selection. Hu, Peng, Tai, and Tang (2016) use the average
ercentage of zeros (APoZ) to select important channels. Several
raining based methods (Alvarez & Salzmann, 2016; Liu et al.,
017) have been proposed to automatically identify the redun-
ant channels by introducing a sparsity regularizer in the training
bjective. The reconstruction methods (He, Zhang, & Sun, 2017;

uo, Wu, & Lin, 2017) seek to solve the channel pruning problem
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by minimizing the reconstruction error between the feature maps
of the pretrained model and the compressed model. Recently,
Zhuang et al. (2018) propose a discrimination-aware channel
pruning (DCP) method to choose the channels that contribute
to the discriminative power and obtain state-of-the-art results.
Based on DCP, Liu et al. (2020) further propose a discrimination-
aware kernel pruning (DKP) method by removing the redundant
kernels according to the discrimination power. However, these
methods only focus on the redundancy in model parameters but
ignore the redundancy incurred by the input data.

2.2. Network quantization

Network quantization aims to convert the pretrained full-
precision convolution networks into the low-precision versions
to reduce the computational cost. Recently, Han, Mao, and Dally
(2016) propose a three-stage deep compression pipeline, includ-
ing pruning, trained quantization, and Huffman coding. DoReFa-
Net (Zhou et al., 2016) seeks to quantize the full precision weights,
activations, and gradients to the low bit ones for deep networks.
In ternary weight networks (TWNs) (Li, Zhang, & Liu, 2016; Zhu,
Han, Mao, & Dally, 2017), the parameters are constrained to
+1, 0, and −1, and the model achieves higher accuracy than
inary neural networks. Similar to channel pruning, network
uantization also reduces the redundancy in model parameters
nd may yield limited performance.

.3. Energy-efficient model design

Many energy-efficient modules have been proposed to reduce
he computational cost of deep networks. Specifically, sparse con-
olution (Graham, Engelcke, & van der Maaten, 2018; Liu, Wang,
oroosh, Tappen, & Pensky, 2015) zeros out a large
umber of parameters to reduce the model size. Group convo-
ution (Krizhevsky et al., 2012) and depthwise separable con-
olution (Sifre & Mallat, 2014) divide the input channels into
roups to reduce the redundant communications among different
roups. NAT (Guo et al., 2019) replaces redundant operations
ith identity mapping or directly remove them to obtain efficient
odels.
Related to our method, Li, Liu, Luo, Change Loy and Tang

2017) propose a Region Convolution (RC) that reduces the com-
utational redundancy for semantic segmentation models. Specif-
cally, given an input feature map, RC performs convolutions on
he regions of hard pixels and discards the easy pixels according
o the confidence of the predicted mask. However, it has some
nderlying limitations. First, RC relies on the predicted confidence
f all pixels to construct the mask and cannot be applied to
asks without dense prediction, e.g., image classification. Second,
C completely discards the easy regions and may influence the
eatures learned in the deeper layers. Unlike RC, our CAC pre-
erves the information in all regions/pixels and can be applied
o most computer vision tasks, e.g., image classification, semantic
segmentation, and object detection.

Very recently, Chen et al. propose the octave convolution
(OctConv) (Chen et al., 2019) method, which reduces the spatial
resolution of some low-frequency feature maps to reduce the
computational complexity. However, it has two major limitations.
First, the low-frequency feature maps are predefined before train-
ing rather than detected according to the input data. Second,
OctConv only considers the redundancy in the channels of the
feature maps but ignores the redundancy in the data content,
e.g., pixels. Compared to OctConv, our CAC automatically de-
tects the sharp/smooth windows from the input data to achieve
content-aware computation. Moreover, CAC considers the pixel

level redundancy caused by the input data.
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Fig. 1. Demonstration of computational redundancy in the input feature maps of different layers of ResNet18 (pretrained on ImageNet). The top row and bottom row
how the input feature maps and the corresponding gradient in different layers, respectively. Red boxes denote the sharp windows that contain the main content
f the image. Blue boxes denote the smooth windows that contain limited information about the image and require redundant computation. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
. Notations and problem definition

In this paper, we assume that the convolution has the stride
f 1 and is performed with padding to guarantee that the output
eature maps have the same size as the input feature maps. In this
aper, we consider the squared input images and feature maps.
or simplicity, we consider one single-channel input feature map
∈ Rn×n and one convolutional kernel W ∈ Rk×k, where n and
denote the sizes of the feature maps and kernels, respectively.
hus, the standard convolution can be written as

= X ⊗ W, (1)

here ⊗ denotes the convolutional operator.
In practice, the computation of convolution is often converted

o the matrix–matrix or matrix–vector multiplication (Vasudevan,
nderson, & Gregg, 2017). Given a convolution with a k×k kernel
nd an input feature map X ∈ Rn×n, there are n2 windows that
re convolved by the kernel (Ludwig, 2013). In this sense, we can
epresent X by a set of windows

:= {Qi ∈ Rk×k
| i = 1, . . . , n2

}, (2)

here Qi denotes the ith window in Ψ . For any window Qi, we
an reshape it into a vector pi = vec(Qi) ∈ Rk2 . For convenience,
e define P := [p1, . . . , pn2 ] ∈ Rk2×n2 and w := vec(W) ∈

Rk2 . Note that the transformation from X to P is often called
im2col (see Fig. 2). Thus, Eq. (1) can be written as a matrix–vector
multiplication:

Y = vec2mat(PTw), (3)

where the function vec2mat(·) denotes the operation to reshape
a vector to a matrix.

Clearly, the complexity of the matrix–vector multiplication is
O(n2k2), which can be very expensive when n and/or k are very
large. However, some of the windows are very smooth and only
contain limited information. More critically, performing convo-
lution on smooth windows may also introduce noises into the
computation and thus hamper the performance. Thus, it is neces-
sary and important to reduce the computational redundancy on

smooth windows to improve the performance of convolution.
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4. Proposed method

In this paper, we propose a Content-aware Convolution (CAC)
that replaces the original kernel with a 1 × 1 kernel to perform
convolution on smooth windows. Moreover, we present an effec-
tive method to automatically detect smooth windows. We show
the overall scheme in Fig. 2 and the detailed computation method
of CAC in Algorithm 1.

4.1. Motivation

The standard convolution convolves the input images/features
by transforming them into a set of windows and adopts a sliding
window scheme to extract features (Ludwig, 2013). However, not
all the windows contribute equally to the prediction results of
deep networks. As shown in Fig. 1, there are a large number
of smooth windows in the feature maps of each layer. These
windows often contain very similar pixels and come with very
limited information about the data. As a result, performing convo-
lution on smooth windows can be redundant. More critically, the
computational redundancy on these smooth windows may also
introduce noises into the computation and thus deteriorate the
performance.

Instead of convolving all the windows using the same kernel,
we seek to perform different convolutional computations on the
windows according to their smoothness. Specifically, we first
recognize the sharp and smooth windows. Then, we perform the
standard convolution on the sharp windows and perform the
convolution with a smaller kernel of 1 × 1 on a single pixel of
the smooth windows to reduce the computational redundancy.
Since the computation depends on the content of the input data
in each layer, we call our method Content-aware Convolution
(CAC).

4.2. Content-aware convolution

Given an input feature map or image, we divide the whole
window set Ψ into two disjoint subsets, namely the sharp win-
dow set Λ and the smooth window set Φ . We will illustrate how
to detect smooth/sharp windows from Ψ in Section 4.3. To reduce
the computational redundancy on smooth windows, we seek to
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Fig. 2. The computation method of Content-aware Convolution. We first divide the input feature maps into two parts, namely the sharp windows (red boxes)
and smooth windows (blue boxes). Then, we perform k × k convolution on sharp windows and 1 × 1 convolution on smooth windows. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
G

Algorithm 1: Content-Aware Convolution (CAC).

Require: Input feature map X ∈ Rn×n;
Convolutional kernel W ∈ Rk×k;
Learnable parameters kernel γ and β;
Set of input windows Ψ := {Qi ∈ Rk×k

| i = 1, ..., n2
}.

1: Compute the 1×1 kernel wΦ using Eqn. (6);
2: Compute the average feature map using Eqn. (9);
3: Compute the gradient of feature maps G using Eqn. (10);
4: Compute the score map based on G:

M = Sigmoid (γG + β);
5: Obtain the set of sharp windows:

Λ = {Qi | Mi > 0.5};
6: Obtain the set of smooth windows:

Φ = Ψ \ Λ;
7: Perform convolution on Λ:

YΛ = Conv(Λ;W);
8: Perform convolution on Φ:

YΦ = Conv(Φ; wΦ );
9: Combine YΛ and YΦ to obtain the final output:

Y = Combine(YΛ,YΦ ).

use a 1 × 1 kernel to replace the original large kernel. Given an
input window Qi ∈ Rk×k and a single-channel kernel W ∈ Rk×k,
the output of a convolution layer yi can be computed by

yi = Qi ⊗ W = p⊤

i w =

k2∑
j=1

pjwj, (4)

where pi denotes vector presentation of Qi and pj denotes the jth
element of pi. If Qi is a smooth window, it implies that all the
elements of the window should have very similar values, i.e., for
∀m, n∈{1, . . . , k2}, pm ≈ pn. Therefore, it follows that

p⊤

i w =

k2∑
j=1

pjwj ≈ p̄ ·

k2∑
j=1

wj, (5)

where p̄ can be the average value of all pj (p̄ =
1
k2

∑k2
j=1 pj) or

ny element of this window. In this paper, we choose the center
lement to compute p̄. Relying on Eq. (5), we approximate the
riginal k × k convolution kernel using a 1 × 1 kernel:

Φ =

k2∑
j=1

wj. (6)

Note that the computation on similar pixels may introduce noises
into the computation. Our CAC performs convolution on a single
pixel in a window and thus effectively reduces the impact of the
noisy information. In this sense, the CAC based models are often
 t
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more robust than the models built with the standard convolution
(see results in Table 5). Moreover, the computational cost of CAC
on smooth windows can be reduced to 1/k2 of the cost with the
k × k kernels.

Given the sharp windows Λ and smooth windows Φ , we
obtain the output of CAC by performing a k × k convolution and
a 1 × 1 convolution on Λ and Φ , respectively. Let W ∈ Rk×k be
the parameters of a single-channel convolutional kernel, wΦ be
the 1 × 1 kernel obtained by Eq. (6). The computation on Λ and
Φ can be formulated by

YΛ = Conv(Λ;W), YΦ = Conv(Φ; wΦ ). (7)

Then, we combine YΛ and YΦ to obtain the final output according
to the relative positions of the windows.

Y = Combine(YΛ,YΦ ). (8)

4.3. Sharp and smooth window recognition

Based on the smoothness of windows, we propose an effective
method to automatically detect the sharp/smooth windows. In
this paper, we measure the data smoothness using the gradients
of the input images or features.

For any layer of a deep network, not all the channels are
useful and some of them are noisy or irrelevant to the final
prediction results (Zhuang et al., 2018). As a result, the features in
these channels can be very noisy and thus may hamper the final
prediction results (Wang, Ouyang, Wang, & Lu, 2015). Regarding
this issue, we seek to compute the average feature map over
different channels to alleviate the influence of noisy features:

X =
1
m

m∑
i=1

Xi, (9)

where m denotes the number of channels. Then, we compute the
gradient of the averaged feature map to compare the sharpness
of different windows. In this paper, we use the Sobel opera-
tor (Kanopoulos, Vasanthavada, & Baker, 1988) to compute the
gradient by performing two 1-d convolutions along the x- and
y-axis, respectively:

Gx = X⊗
[
−1 0 + 1

]
⊗

⎡⎣ 1
2
1

⎤⎦ , Gy = X⊗
[
1 2 1

]
⊗

⎡⎣−1
0

+1

⎤⎦ .

Thus, the total gradient becomes

G =

√
G2
x + G2

y . (10)

iven the feature map with m channels, computing gradients on
he averaged feature map only yields 1/m cost of the computation
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n all the channels. Compared to the cost of convolution, the cost
f computing gradients can be negligible in practice.
Based on the computed gradients, we may divide the windows

nto sharp and smooth windows according to some threshold.
owever, such a threshold has to be carefully selected for each
ayer, making it very time consuming and labor-intensive. To
ddress this issue, we propose a learnable module to automat-
cally discriminate the sharp windows from the smooth win-
ows. Specifically, we exploit an affine function to transform the
radients and then apply the Sigmoid function to compute the
robability of a window being sharp. The probability map M can
e computed by

= Sigmoid (γG + β), (11)

here γ and β are trainable parameters.
Here, we consider the windows with the probability larger

han 0.5 as sharp windows and the other windows as smooth
indows. Formally, the sets of sharp and smooth windows can
e represented by:

= {Qi | Mi > 0.5}, Φ = Ψ \ Λ, (12)

hereMi is the score of the window Qi and Ψ denote the set of all
he windows. By changing a hard threshold manner to a learnable
cheme, the model is able to adjust γ and β to find the optimal
umber of smooth windows to perform 1 × 1 convolution. We
ill show the training method for γ and β in Section 4.4.

.4. Training method

Note that CAC seeks to find a number of smooth windows
o perform 1 × 1 convolution to improve the performance. Al-
hough we can reduce the computational cost, performing 1 × 1
convolution on too many windows may also hamper the perfor-
mance (see results in Table 6). To find a good trade-off between
model performance and computational cost, we propose to solve
a multi-objective optimization problem.

Let M be the CAC-based model to be trained, Mb be the
baseline model with the standard convolution, and c(∗) be the
function to measure the computational cost of deep models, e.g.,
the number of multiply-adds (MAdds). To train CAC-based mod-
els, we use the weighted product method1 to build the objective:

L = ℓ(M)
(

c(M)
c(Mb)

)λ

, (13)

here ℓ(M) denotes the standard loss function w.r.t. M (e.g.,
the cross-entropy loss for classification models) and λ ≥ 0 is a
constant weight factor. When λ = 0, the objective is reduced to
the standard loss for a specific task. When λ > 0, we seek to find
a promising trade-off between model performance and computa-
tional cost. In this paper, to obtain a good balance, we use λ to
ontrol the importance of computational cost (see discussions on
in Section 7.2).

. More discussions

In this section, we first analyze the computational complexity
f the proposed CAC convolution in Section 5.1. Then, we dis-
uss the differences between the proposed methods and existing
ethods in Section 5.2.

1 We use the weighted product method because it is easy to customize for
ifferent models. The weighted sum method is also appropriate.
661
5.1. Computational complexity analysis

To analyze the computational complexity of the proposed CAC,
we consider the more general case in which a convolution layer
contains multiple channels. Let X ∈ Rn×n×cin be the input feature
maps of a convolution layer and the convolutional kernel be
W ∈ Rk×k×cin×cout , where cin and cout are the number of input and
output channels, respectively. Then, the convolution in a standard
convolution layer can be computed by

O = X ⊗ W, O ∈ Rn×n×cout , (14)

where ⊗ denotes the convolution operation. The number of
multiply-adds (MAdds) required by the standard convolution is
given by:

ΩConv = cin · cout · k · k · n · n. (15)

Given a specific proportion of sharp windows (denoted by
ρ), the computational complexity consists of three parts. First,
there are ρ · n2 sharp windows in Λ where we perform the
standard convolution using the k×k kernel. Thus, the complexity
of the first part becomes ρΩconv. Second, we perform 1 × 1
convolution on (1− ρ) · n2 smooth windows in Φ , each of which
only requires 1/k2 complexity of the standard k × k convolution.
Therefore, the computational complexity of the second part is
(1 − ρ)Ωconv/k2. Third, we perform two 1-d convolutions with a
single output channel to compute the gradients along the x- and
y-axis, respectively. Thus, there are a total of four 1 × 3 or 3 × 1
convolutions to compute the gradient.

Compared to the standard convolution with cin input channels
and cout output channels, the complexity of computing gradients
in the third part is

4 ·
3
k2

·
1

cincout
ΩConv  

computing gradient

+
1

k2cincout
Ωconv  

linear transformation

=
13

k2cincout
Ωconv. (16)

As a result, the total computational complexity of the CAC con-
volution becomes:

ΩCAC =

⎛⎜⎜⎜⎝ ρ
k×k conv

+
1 − ρ

k2  
1×1 conv

+
13

k2cincout  
computing score map

⎞⎟⎟⎟⎠ΩConv. (17)

To accelerate the computation of the convolutions, according
o Eq. (17), we have to satisfy the condition such that ΩCAC/ΩConv
1. In this sense, we can obtain the upper bound of the ratio ρ:

≤ ρ = 1 −
13

(k2 − 1) · cin · cout
. (18)

Specifically, for a 3 × 3 convolution (i.e., k = 3), the upper
ound is ρ = 1 −

13
8·cin·cout

. Taking ResNet (He et al., 2016) as
n example, the number of channels cout ranges from 16 to 512.
n this sense, the ratio only needs to be ρ < 99.3% when we
ubstitute the smallest value cin = cout = 16 into Eq. (18). Thus,
here is considerable potential to accelerate the computation of
he standard convolution.

.2. Differences from existing methods

The proposed CAC method has several essential differences
rom existing methods. First, the standard convolution performs
onvolution using a general kernel on all the windows and ig-
ores the inherent redundancy, which may hamper the perfor-
ance (see results in Tables 1 and 2). In contrast, the proposed
AC performs different convolutions on these windows to reduce
he computational redundancy and improve the performance.
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Fig. 3. Visualization of the feature maps of different layers in CAC-ResNet18 on ImageNet. For each image, the top row shows the feature map of different layers
nd the bottom row shows the corresponding map of sharp windows detected by CAC. In the bottom row, yellow regions denote the sharp windows to perform
× 3 convolution and the dark regions denote the smooth ones to perform 1 × 1 convolution. We scale the feature maps of different layers to the same spatial

ize for better visualization.
able 1
omparisons of different convolutions in terms of both computational complexity and testing error based on various architectures on CIFAR-10. ‘‘\’’ denotes the
issing results of the models to which OctConv cannot be applied.
Conv type ResNet20 ResNet32 ResNet56 DenseNet121 ShuffleNetV2

#MAdds Error #MAdds Error #MAdds Error #MAdds Error #MAdds Error
(M) (%) (M) (%) (M) (%) (M) (%) (M) (%)

Standard Conv 40.93 8.75 69.12 7.51 126.08 6.97 888.51 4.78 45.04 7.25
CAC 25.79 8.37 46.58 7.25 87.27 6.51 733.82 4.60 41.33 7.13

OctConv (Chen et al., 2019) 26.33 8.77 44.02 8.07 61.72 7.58 403.80 5.52
CAC-OctConv 19.49 8.60 34.39 7.63 52.12 6.99 356.63 4.68
Second, existing methods perform the same computation on the
amples with different spatial redundancy. Unlike these methods,
ur CAC adopts a content-aware computation scheme that dy-
amically allocates suitable computational resources for different
amples according to their data smoothness. It is worth noting
hat our CAC is more robust to the samples with adversarial per-
urbations than existing convolution methods. The main reason
s that CAC replaces the large kernel convolution with a 1 × 1
convolution on smooth windows, which effectively reduces the
influence incurred by the noises/attacks in these windows.

6. Experiments

In this section, we use CAC to accelerate two popular con-
volution methods, namely the standard convolution and the oc-
tave convolution (OctConv) (Chen et al., 2019). We apply CAC
to various architectures and demonstrate the performance on
three computer vision tasks, including image classification, se-
mantic segmentation, and object detection. All implementations
are based on PyTorch.2

We organize the experiments as follows. First, we show the
visual interpretation of each CAC layer in Section 6.1. Second,
we evaluate our CAC on image classification tasks in Section 6.2.
Third, we apply our CAC method to semantic segmentation mod-
els and evaluate the proposed method in Section 6.3. Fourth,
we conduct experiments to show the effectiveness of our CAC
method on object detection tasks in Section 6.4. Finally, we in-
vestigate the effect of the hyperparameter λ in Section 7.2.

2 The implementation of the proposed CAC method is available at https:
/github.com/guoyongcs/CAC.
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6.1. Visual interpretation of CAC convolution

To better understand the proposed CAC method, we visualize
the feature maps and the corresponding masks of the sharp
windows of different CAC layers inside deep networks. In this
experiment, we take the CAC-ResNet18 model as an example and
show the results in Fig. 3.

From Fig. 3, the sharp windows (marked in yellow) are often
located at the edges and contain the main information about
the object. However, the smooth windows (marked in black) are
often very smooth areas that only contain little information. As
discussed in Section 4, when the input windows are very smooth,
it is not necessary to use a large kernel to perform convolution.
Thus, we can reduce the computational cost of convolution on
the smooth windows using a 1 × 1 kernel to approximate the
original output. In this way, our CAC method can greatly re-
duce the computational complexity without a loss of information.
More critically, since the input images or features may have
different numbers of smooth windows, the resultant CAC models
can dynamically allocate suitable computation power to different
input images. Thus, our CAC models can perform content-aware
computation to improve the performance of convolution.

6.2. Experiments on image classification

In this experiment, we consider two popular convolution
methods as the baseline methods, namely, the standard convolu-
tion and the OctConv (Chen et al., 2019). We apply the proposed
CAC method to various image classification models, including
ResNet (He et al., 2016), DenseNet (Huang, Liu, van der Maaten, &
Weinberger, 2017), and ShuffleNetV2 (Ma, Zhang, Zheng, & Sun,
2018).

https://github.com/guoyongcs/CAC
https://github.com/guoyongcs/CAC


Y. Guo, Y. Chen, M. Tan et al. Neural Networks 143 (2021) 657–668

t

c
a
i
c
c

n
a
C
s
1
t
l
a
0
t
w

|

Fig. 4. Visualization of the ratios of sharp windows for different layers in ResNet20, ResNet32, and ResNet56 on CIFAR-10. We compute the ratios by averaging the
ratios over 10,000 testing samples.
Table 2
Comparisons of different convolutions in terms of both computational complexity and validation error on ImageNet. ‘‘\’’ denotes the missing results of the models
o which OctConv cannot be applied.
Conv type ResNet18 ResNet50 DenseNet121 ShuffleNetV2

#MAdds Error (%) #MAdds Error (%) #MAdds Error (%) #MAdds Error (%)

(G) Top-1 Top-5 (G) Top-1 Top-5 (G) Top-1 Top-5 (G) Top-1 Top-5

Conv 1.81 30.36 11.02 4.09 24.01 7.07 2.83 25.35 7.83 0.15 30.64 11.68
CAC 1.41 30.19 10.87 3.75 23.79 6.81 2.52 24.49 7.37 0.13 30.13 11.27

OctConv (Chen et al., 2019) 1.14 29.64 10.48 2.37 23.27 6.55 1.37 25.68 7.90
CAC-OctConv 0.96 29.43 10.27 2.19 23.05 6.37 1.28 24.82 7.61
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6.2.1. Datasets and implementation details
We conduct experiments on two benchmark image classifi-

ation datasets, including CIFAR-10 (Krizhevsky & Hinton, 2009),
nd ImageNet (Deng et al., 2009). CIFAR-10 consists of 50k train-
ng samples and 10k testing images with 10 classes. ImageNet
ontains 123k training samples and 50k testing images for 1000
lasses.
We follow the settings in He et al. (2016) and use SGD with

esterov (Nesterov, 1983) for the optimization. The momentum
nd weight decay are set to 0.9 and 0.0001, respectively. On
IFAR-10, we train the models for 400 epochs using a mini-batch
ize of 128. The learning rate is initialized to 0.1 and divided by
0 at epochs 160 and 240, respectively. On ImageNet, we train
he models for 90 epochs with a mini-batch size of 256. The
earning rate is started at 0.1 and divided by 10 at epochs 30
nd 60, respectively. We train the CAC based models with λ =

.3. We use the number of multiply-adds (MAdds) to measure
he computational complexity of deep models. Based on sharp
indow set Λ and the set of all the windows Ψ , we compute

the ratio of sharp windows inside a convolution layer by ρ =

Λ|/|Ψ |, where |·| denotes the cardinality of a set. In general, a
lower ratio implies that the more windows would be convolved
with a 1 × 1 kernel.

6.2.2. Comparisons on CIFAR-10
In this experiment, we evaluate our CAC method on a small

dataset CIFAR-10. From Table 1, the proposed CAC method greatly
accelerates ResNet and DenseNet models equipped with different
convolution types. Specifically, for both the models with the
standard convolution and OctConv, our CAC consistently yields
significantly better performance and lower computational cost.

Moreover, we also show the ratios of sharp windows ρ of each o
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layer based on several models in Fig. 4. From this figure, deep
layers tend to have larger ratios than shallow layers due to their
better representation ability and smaller feature map, yielding a
smaller risk of containing smooth windows. These results show
that the proposed CAC removes the redundancy caused by the
smooth windows in each layer.

We also consider very compact models, e.g., ShuffleNetV2,
which mainly consists of 1 × 1 group convolution. However,
ince OctConv requires information exchange among groups, it
ould destroy the computation of group convolution and thus
annot be directly applied to ShuffleNetV2. Thus, we only com-
are the performance of the models equipped with the standard
onvolution and the proposed CAC. Even with such a compact
odel, our CAC further improves the validation accuracy and

educes the redundancy in the model. These results demonstrate
he effectiveness of our method.

.2.3. Comparisons on ImageNet
We also evaluate our method on a large-scale dataset Ima-

eNet. Similar to the experiments on CIFAR-10, we apply our CAC
o improve both the standard convolution and OctConv. In this
xperiment, we consider ResNet, DenseNet and ShuffleNetV2 as
he baseline model. The results are shown in Table 2.

From Table 2, our CAC based models significantly outperform
he baseline models with different architectures in terms of Top-1
nd Top-5 error. More critically, the resultant models often have
ower computational cost and thus become more compact. These
esults demonstrate the superiority of the proposed CAC method
ver the existing methods. We also show the ratios ρ of each
ayer for ImageNet models in Fig. 5. From this figure, due to the
raining difficulty on a large-scale dataset, ImageNet models are

ften hard to compress without performance degradation (Liu
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able 3
omparisons of different models on each class for semantic segmentation. We adopt the FCN-ResNet18 model as the baseline model. ‘‘–’’ denotes the results that
re not reported.
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU #MAdds (G)

BONN-
SVR (Carreira, Li
and Sminchisescu,
2012)

54.3 23.9 39.5 35.3 42.6 65.4 53.5 46.1 15.0 47.4 30.1 33.9 48.8 54.4 46.4 28.8 51.3 26.2 44.9 37.2 43.3

O2P (Carreira,
Caseiro, Batista
and Sminchisescu,
2012)

64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 47.8 –

SDS (Hariharan,
Arbeláez, Girshick,
& Malik, 2014)

63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6 –

MSRA-CFM (Dai,
He, & Sun, 2015)

75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8 –

FCN (Long,
Shelhamer, &
Darrell, 2015)

83.5 29.7 68.7 59.8 50.2 80.3 71.9 71.8 28.6 59.6 44.4 61.2 59.0 66.7 80.3 40.8 63.4 42.5 74.4 66.9 61.7 45.0

RC-FCN (Li, Liu
et al., 2017)

82.8 28.9 64.4 58.6 50.3 80.5 70.5 71.6 26.7 58.3 45.5 58.4 58.1 67.8 79.6 40.9 58.6 42.7 73.9 63.6 60.6 38.2

CAC-FCN 84.1 29.9 69.1 60.5 51.9 82.2 73.1 71.5 28.9 59.7 48.0 59.5 60.2 69.2 80.2 41.8 63.1 44.1 76.9 67.0 62.5 37.2
Fig. 5. Visualization of the ratios of sharp windows for different layers in ResNet18 and ResNet50 on ImageNet. The layer index for ResNet50 denotes the index of
the bottleneck block. We compute the ratios for different layers by averaging the samples in the validation set.
C

et al., 2017; Luo et al., 2017; Zhuang et al., 2018), yielding larger
ratios of the intermediate layers than the CIFAR-10 models.

6.3. Experiments on semantic segmentation

We further apply the proposed CAC to semantic segmentation
odels, e.g., fully convolutional network (FCN) (Long et al., 2015).

We compare the performance of the models with and without
CAC based on a benchmark dataset PSACAL VOC 2012 (Evering-
ham et al., 2015).

6.3.1. Compared methods
We adopt FCN as the baseline model and apply our CAC to

how the effectiveness of CAC. In this experiment, we compare
ur CAC with a strong baseline region convolution (RC). More-
ver, we also consider several semantic segmentation methods
s the baselines, including BONN-SVR (Carreira, Li et al., 2012),
2P (Carreira, Caseiro et al., 2012), SDS (Hariharan et al., 2014),
nd MSRA-CFM (Dai et al., 2015).

.3.2. Datasets and implementation details
We conduct experiments on the benchmark semantic segmen-

ation dataset PASCAL VOC 2012, which consists of 1464 training
mages and 1449 validation images. We measure the performance
sing the commonly used metric, i.e., the mean intersection over
nion (mIoU), which computes the percent between the intersec-
ion and union of the ground truth segmentation mask and the
rediction mask.
In this experiment, we use the ImageNet pretrained model as

he backbone model, e.g., ResNet18. Following the setting in Chen,
apandreou, Schroff, and Adam (2017), we make some modifi-
ations to adapt the model to the semantic segmentation task.
irst, we remove the last two subsampling layers in ResNet18 to
pscale the size of the output feature map by 4×. Second, we
664
replace the last four convolution layers with dilated convolutions.
Third, we replace the linear layer with an interpolated upsam-
pling layer. In the training, we first train the model on MS-COCO
dataset and then finetune it on PASCAL VOC 2012. We make some
modifications to adapt it to the semantic segmentation task. We
apply data augmentation by randomly scaling the input images
(from 0.5 to 2.0) and randomly left–right flipping in training. The
input images are resized to 480 × 480 in testing. We finetune
30 epochs using mini-batch SGD with a weight decay of 0.0001
and a momentum of 0.9. The learning rate is started at 0.01. In all
experiments, we train the CAC based models with λ = 0.3 and

= 0.5.

6.3.3. Performance comparison
In this section, we compare the proposed CAC method with the

standard convolution and region convolution (RC) on semantic
segmentation tasks. For convenience, we use FCN, RC-FCN, and
CAC-FCN to represent the models with the standard convolution,
RC, and CAC. We show the results in Table 3 and Fig. 6.

From Table 3, our CAC-FCN outperforms the baseline models
with the standard convolution and RC on most of the categories.
For the average performance in terms of mIoU, the CAC-FCN
model yields significant performance improvement. We also pro-
vide a visual comparison of different models in Fig. 6. From this
figure, our CAC-FCN produces more accurate segmentation masks
than the FCN and RC-FCN baselines.

6.4. Experiments on object detection

In this section, we apply the proposed CAC method to object
detection models. We evaluate the CAC-based models on the
benchmark dataset MS COCO (Lin et al., 2014).
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Fig. 6. Visual comparison of the segmentation masks produced by different methods. The first and the second columns show the input images and the corresponding
ground truth segmentation masks, respectively. The last three columns show the segmentation masks predicted by different models.
6.4.1. Compared methods
In this experiment, we adopt the widely used model Faster-

RCNN network as the baseline model. We compare our CAC
based model with several state-of-the-art object detection mod-
els, including Fast-RCNN (Girshick, 2015), ION (Bell, Lawrence Zit-
nick, Bala, & Girshick, 2016), YOLOv2 (Redmon & Farhadi, 2017),
SSD300 (Liu et al., 2016) and SSD512 (Liu et al., 2016).

6.4.2. Datasets and implementation details
We conduct experiments on the MS COCO dataset which con-

tains 117k training images and 5k validation images with 80
classes. We use the ImageNet pretrained ResNet18-based FPN
network for comparing different methods on MS COCO dataset.
We follow the setting in Ren, He, Girshick, and Sun (2015). The
networks are optimized for 13 epochs using SGD with a weight
decay of 0.0001 and a momentum of 0.9. The learning rate is
initialized with 0.02 and divided by 10 at 8 and 11 epochs.

We evaluate different object detection models using the
COCO’s standard metric, namely mAP@0.5 and mAP@0.75. These
two metrics represent the mean average precision (mAP) com-
puted at the IoU thresholds of 0.5 and 0.75, respectively. We also
compute mmAP for different models by averaging multiple mAP
values with the IoU thresholds ranging from 0.5 to 0.95 with the
step of 0.05. In all experiments, we train the CAC based models
with λ = 0.3 and C = 0.5.

6.4.3. Performance comparison
In this experiment, we use CAC to replace the standard convo-

lution layers in the Faster-RCNNmodel. We show the quantitative
and visual results in Table 4 and Fig. 7.

From Table 4, CAC can obtain very compact models with better
performance and lower computational cost than the baseline
models equipped with the standard convolution. Specifically, the
resultant CAC-Faster-RCNN has a lower computational cost and
consistently outperforms the baseline model on all the considered
metrics, including mmAP, mAP@0.5, and mAP@0.75. We also
show the visual comparison of different object detection models
in Fig. 7. From this figure, our CAC model generates more accu-
rate bounding boxes than the Faster-RCNN baseline. The results
demonstrate the effectiveness of the proposed CAC method on
object detection tasks.
665
Table 4
Comparisons of different object detection models on MS COCO dataset. We
use the ResNet18 model as the backbone. ‘‘–’’ denotes results that are
not reported.
Model mmAP mAP@0.5 mAP@0.75 #MAdds (G)

Fast-
RCNN (Girshick,
2015)

18.9 38.6 – –

ION (Bell et al.,
2016)

23.6 43.2 23.6 –

YOLOv2 (Redmon
& Farhadi, 2017)

21.6 44.0 27.8 –

SSD300 (Liu et al.,
2016)

23.2 41.2 23.4 –

SSD512 (Liu et al.,
2016)

26.8 46.5 27.8 –

Faster-RCNN (Ren
et al., 2015)

28.6 49.2 29.6 23.82

CAC-Faster-RCNN 29.9 49.9 31.1 20.49

7. Further experiments

In this section, we first compare the accuracy of our CAC
method with the standard convolution method under adversarial
perturbations to investigate the robustness of our method. Then,
we conduct more experiments to investigate the effect of the
hyperparameter λ.

7.1. Comparisons of Robustness

We investigate the robustness of the proposed CAC by com-
paring the accuracy on adversarial samples generated by four dif-
ferent attack methods, including FGSM (Goodfellow et al., 2015),
MI-FGSM (Dong et al., 2018), PGD10 (Madry et al., 2018) and
PGD100 (Madry et al., 2018). We train the standard convolution
models (namely ResNet20 and ResNet56) and the CAC based
models with adversarial samples on CIFAR-10. We report the
adversarial accuracy that is evaluated on adversarial samples. The
higher adversarial accuracy the model has, the more adversarially
robust the model will be.

Following the setting in Madry et al. (2018), we train all
the models for 200 epochs and use an SGD optimizer with a
momentum of 0.9 and a weight decay of 0.0005. The initialized
learning rate is set to 0.1 and divided by 10 at epochs 90, 140
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Fig. 7. Visual comparison of different object detection methods. The first column shows the input images with the corresponding ground truth bounding boxes. The
second and third columns show the bounding boxes predicted by different models.
Table 5
Comparisons of robustness of deep models with different convolutions on CIFAR-10.
Model Method Error on adversarial examples (%)

FGSM (Goodfellow,
Shlens, & Szegedy, 2015)

MI-FGSM (Dong et al.,
2018)

PGD-10 (Madry, Makelov,
Schmidt, Tsipras, & Vladu, 2018)

PGD-100 (Madry et al.,
2018)

ResNet20 Standard Conv 29.82 54.89 57.99 65.41
CAC 28.97 53.67 57.13 64.74

ResNet56 Standard Conv 26.91 51.91 55.33 64.81
CAC 25.58 51.03 54.72 63.75
Table 6
Comparisons of the CAC-ResNet20 models with different values of λ on
CIFAR-10.
Method Standard Conv CAC

λ – 0.3 0.5 0.7 1.0

Error (%) 8.75 8.37 9.92 10.07 11.81
#MAdds ↓ (%) 0 36.98 40.38 51.68 69.39

and 160, respectively. All attacks are with a total perturbation
scale of 8/255 (0.03) and a step size of 2/255 (0.01). We set the
number of attack iterations to 10, 10 and 100 for MIFGSM (Dong
et al., 2018), PGD10 (Madry et al., 2018) and PGD100 (Madry
et al., 2018), respectively. From Table 5, our CAC based models
achieve higher adversarial accuracy than the standard convolu-
tion ones under four different attack perturbations. These results
demonstrate that the proposed CAC convolution is more robust
than the standard convolution. The main reason is that our CAC
replaces the original large kernel with a 1 × 1 kernel to perform
onvolution on smooth windows. In this sense, we are able to
ffectively reduce the influence incurred by the noises and attacks
n these windows.

.2. Effect of λ on CAC

We investigate the effect of the hyperparameter λ in Eq. (13)
on the performance of CAC models. In this experiment, we use
ResNet20 as the baseline model and train the models with differ-
ent values of λ ∈ {0.3, 0.5, 0.7, 1.0} on CIFAR-10. We show the
esults in Table 6.

From Table 6, the reduction of MAdds would increase when we
radually increase λ. However, due to the redundancy incurred
y the smooth windows, it is possible to simultaneously reduce
he computational cost and improve the performance, e.g., when
setting λ = 0.3. If we further increase the value of λ, the objective
in Eq. (13) encourages the model to focus more on the computa-
tional cost but compromise the performance. For example, when
λ is set to 1.0, CAC reduces the computational cost by 69.39% but
incur significant performance degradation. Thus, we set λ = 0.3
to train CAC models in the experiments.

8. Conclusion

In this paper, we have proposed a Content-aware Convolu-
tion (CAC) to reduce the computational redundancy incurred by
666
the smooth windows when performing convolution. To reduce
the computational redundancy and improve the performance,
CAC replaces the original k × k kernel with a 1 × 1 kernel to
perform convolutions on the smooth windows. Moreover, we
propose an efficient algorithm to automatically recognize the
sharp and smooth windows. Given different samples, the resul-
tant CAC models could allocate different computation resources
according to their data smoothness, which makes it possible for
content-aware computation. Extensive results on image classifi-
cation, semantic segmentation, and object detection tasks show
that our CAC based models yield significantly better performance
and lower computational cost than the baseline models with the
standard convolution.
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