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Abstract

Test-time adaptation (TTA) seeks to tackle po-
tential distribution shifts between training and
testing data by adapting a given model w.r.t. any
testing sample. This task is particularly impor-
tant for deep models when the test environment
changes frequently. Although some recent at-
tempts have been made to handle this task, we
still face two practical challenges: 1) existing
methods have to perform backward computation
for each test sample, resulting in unbearable pre-
diction cost to many applications; 2) while ex-
isting TTA solutions can significantly improve
the test performance on out-of-distribution data,
they often suffer from severe performance degra-
dation on in-distribution data after TTA (known
as catastrophic forgetting). In this paper, we
point out that not all the test samples contribute
equally to model adaptation, and high-entropy
ones may lead to noisy gradients that could dis-
rupt the model. Motivated by this, we propose
an active sample selection criterion to identify re-
liable and non-redundant samples, on which the
model is updated to minimize the entropy loss
for test-time adaptation. Furthermore, to alleviate
the forgetting issue, we introduce a Fisher regular-
izer to constrain important model parameters from
drastic changes, where the Fisher importance is es-
timated from test samples with generated pseudo
labels. Extensive experiments on CIFAR-10-C,
ImageNet-C, and ImageNet-R verify the effective-
ness of our proposed method. Code is available
at https://github.com/mr-eggplant/EATA.
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1. Introduction
Deep neural networks (DNNs) have achieved excellent per-
formance in many challenging tasks, including image clas-
sification (He et al., 2016), video recognition (Wang et al.,
2018; Zeng et al., 2020; 2021; Chen et al., 2021), and many
other areas (Choi et al., 2018; Fan et al., 2020; Xu et al.,
2021). One prerequisite behind the success of DNNs is that
the test samples are drawn from the same distribution as the
training data, which, however, is often violated in many real-
world applications. In practice, test samples may encounter
natural variations or corruptions (also called distribution
shift), such as changes in lighting resulting from weather
change and unexpected noises resulting from sensor degra-
dation (Hendrycks & Dietterich, 2019; Koh et al., 2021).
Unfortunately, models are often very sensitive to such dis-
tribution shifts and suffer severe performance degradation.

Recently, several attempts (Sun et al., 2020; Wang et al.,
2021; Liu et al., 2021; Zhang et al., 2021b;c; Wang et al.,
2022) have been proposed to handle the distribution shifts
by online adapting a model at test time (called test-time
adaptation). Test-time training (TTT) (Sun et al., 2020) first
proposes this pipeline. Given a test sample, TTT first fine-
tunes the model via rotation classification (Gidaris et al.,
2018) and then makes a prediction using the updated model.
However, TTT still relies on additional training modifica-
tions (adding rotation head into the model), and thus the
access to original training data is also compulsory. These
requirements may be infeasible if, e.g., the training data is
unavailable due to privacy/storage concerns or the training
involves unexpected heavy computation. To avoid these,
Tent (Wang et al., 2021) and MEMO (Zhang et al., 2021b)
propose methods for fully test-time adaptation, in which the
adaptation only involves test samples and a trained model.

Although recent test-time adaptation methods are effective
at handling test shifts, they still suffer the following limita-
tions. First, since we adapt models at test time, the adapta-
tion efficiency is quite important in many latency-sensitive
scenarios. However, prior methods rely on performing back-
ward computation for each test sample (even multiple back-
ward passes for a single sample, such as TTT (Sun et al.,
2020) and MEMO (Zhang et al., 2021b)). As performing
back-propagation too much is time-consuming, these ap-
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Table 1. Characteristics of problem settings that adapt a trained model to a potentially shifted test domain. ‘Offline’ adaptation assumes
access to the entire source or target dataset, while ‘Online’ adaptation can predict a single or batch of incoming test samples immediately.

Setting Source Data Target Data Training Loss Testing Loss Offline Online Source Acc.

Fine-tuning % xt, yt L(xt, yt) – ! % Not Considered
Continual learning % xt, yt L(xt, yt) – ! % Maintained
Unsupervised domain adaptation xs, ys xt L(xs, ys) + L(xs,xt) – ! % Maintained
Test-time training xs, ys xt L(xs, ys) + L(xs) L(xt) % ! Not Considered
Fully test-time adaptation (FTTA) % xt % L(xt) % ! Not Considered

EATA (ours) % xt % L(xt) % ! Maintained

proaches may be infeasible when the latency is unacceptable.
Second, these methods focus on boosting the performance of
a trained model on out-of-distribution (OOD) test samples,
ignoring that the model after test-time adaptation suffers
a severe performance degradation (named forgetting) on
in-distribution (ID) test samples (see Figure 3). An eligible
test-time adaptation approach should perform well on both
OOD and ID test samples simultaneously, since test samples
actually often come with both ID and OOD domains.

To address above limitations, we propose an Efficient Anti-
forgetting Test-time Adaptation method (namely EATA),
which consists of a sample-efficient optimization strategy
and a weight regularizer. Specifically, we devise a sample-
adaptive entropy minimization loss, in which we exclude
two types of samples out of optimization: i) samples with
high entropy values, since the gradients provided by those
samples are highly unreliable; and ii) samples are very sim-
ilar. In this case, the total number of backward updates of
a test data streaming is properly reduced (improving effi-
ciency) and the model performance on OOD samples is also
improved. On the other hand, we devise an anti-forgetting
regularizer to enforce the important weights of the model
do not change a lot during the adaptation. We calculate the
weight importance based on Fisher information (Kirkpatrick
et al., 2017) via a small set of test samples. With this reg-
ularization, the model can be continually adapted without
performance degradation on ID test samples.

Contributions: 1) We propose an active sample identifica-
tion scheme to filter out non-reliable and redundant test data
from model adaptation; 2) We extend the label-dependent
Fisher regularizer to test samples with pseudo label gener-
ation, which prevents drastic changes in important model
weights; and 3) We demonstrate that the proposed EATA
improves the efficiency of test-time adaptation and also
alleviates the long-neglected catastrophic forgetting issue.

2. Related Work
We divide the discussion on related works based on the
different adaptation settings summarized in Table 1.

Test-Time Adaptation (TTA) aims to improve model accu-
racy on OOD test data through model adaptation with test
samples. Existing test-time training methods, e.g., TTT (Sun
et al., 2020), TTT++ (Liu et al., 2021) and MT3 (Bartler
et al., 2022), jointly train a source model via both supervised
and self-supervised objectives, and then adapt the model
via self-supervised objective at test time. This pipeline,
however, has assumptions on the manner of model training,
which may not always be controllable in practice. To address
this, fully test-time adaptation methods have been proposed
to adapt a model with only test data, including batchnorm
statistics adaptation (Nado et al., 2020; Schneider et al.,
2020; Khurana et al., 2021), test-time entropy minimiza-
tion (Wang et al., 2021; Fleuret et al., 2021), prediction con-
sistency maximization over different augmentations (Zhang
et al., 2021b), and classifier adjustment (Iwasawa & Matsuo,
2021). Our work follows the fully test-time adaptation set-
ting and seeks to address two key limitations of prior works
(i.e., efficiency hurdle and catastrophic forgetting) to make
TTA more practical in real-world applications.

Continual Learning (CL) aims to help the model remem-
ber the essential concepts that have been learned previously,
alleviating the catastrophic forgetting issue when learning
on a new task (Kirkpatrick et al., 2017; Li & Hoiem, 2017;
Rolnick et al., 2019; Farajtabar et al., 2020; Niu et al., 2021;
Mittal et al., 2021). In our work, we share the same motiva-
tion as CL and point out that test-time adaptation also suffers
catastrophic forgetting (i.e., performance degradation on ID
test samples), which makes test-time adaptation approaches
are unstable to deploy. To conquer this, we propose a simple
yet effective solution to maintain the model performance
on ID test samples (by only using test data) and meanwhile
improve the performance on OOD test samples.

Unsupervised Domain Adaptation (UDA). Conventional
UDA tackles distribution shifts by jointly optimizing a
source model on both labeled source data and unlabeled
target data, such as devising a domain discriminator to learn
domain-invariant features (Pei et al., 2018; Saito et al., 2018;
Zhang et al., 2020b;a). To avoid access to source data, recent
source-free UDA methods are proposed either by generative
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Figure 1. An illustration of the proposed EATA. Given a trained base model fΘo , we perform test-time adaptation with a model fΘ that
initialized from Θo. During the adaptation process, we only update the parameters of batch normalization layers in fΘ and froze the rest
parameters. When a batch of test sample X={xb}Bb=1 come, we calculate a sample-adaptive weight S(x) for each test sample to identify
whether the sample is active for adaptation or not. We only perform backward propagation with the samples whose S(x) ̸= 0. Moreover,
we propose an anti-forgetting regularizer to prevent the model parameters Θ changing too much from Θo.

modeling (Li et al., 2020; Kundu et al., 2020; Qiu et al.,
2021) or information maximization (Liang et al., 2020).
Nevertheless, such methods optimize offline via multiple
epochs and losses. In contrast, our method adapts in an on-
line manner and selectively performs once backward propa-
gation for one given target sample, which is more efficient
during inference.

3. Problem Formulation
Without loss of generality, let P (x) be the distribution of
training data {xi}Ni=1 (namely xi ∼ P (x)) and fΘo(x) be
a base model trained on labeled training data {(xi, yi)}Ni=1,
where Θo denotes the model parameters. Due to the training
process, the model fΘo(x) tends to fit (or overfit) the train-
ing data. During the inference state, the model shall perform
well for the in-distribution test data, namely x ∼ P (x).
However, in practice, due to possible distribution shifts
between training and test data, we may encounter many
out-of-distribution test samples, namely x ∼ Q (x), where
Q (x) ̸= P (x). In this case, the prediction would be very
unreliable and the performance is also very poor.

Test-time adaptation (TTA) (Wang et al., 2021; Zhang et al.,
2021b) aims at boosting the out-of-distribution prediction
performance by doing model adaptation on test data only.
Specifically, given a set of test samples {xj}Mj=1, where
xj ∼ Q (x) and Q (x) ̸= P (x), one needs to adapt fΘ(x)
to improve the prediction performance on test data in any
cases. To achieve this, existing methods often seek to up-
date the model by minimizing some unsupervised objective
defined on test samples:

min
Θ̃

L(x; Θ), x ∼ Q (x) , (1)

where Θ̃ ⊆ Θ denotes the free model parameters that should

be updated. In general, the test-time learning objective
L(·) can be formulated as an entropy minimization prob-
lem (Wang et al., 2021) or prediction consistency maximiza-
tion over data augmentations (Zhang et al., 2021b).

For existing TTA methods like TTT (Sun et al., 2020) and
MEMO (Zhang et al., 2021b)), during the test-time adapta-
tion, we shall need to compute one round or even multiple
round of backward computation for each sample, which
is very time-consuming and also not favorable for latency-
sensitive applications. Moreover, most methods assume
that all the test samples are drawn from out-of-distribution
(OOD). However, in practice, the test samples may come
from both in-distribution (ID) and OOD. Simply optimizing
the model on OOD test samples may lead to severe per-
formance degradation on ID test samples. We empirically
validate the existence of such issue in Figure 3, where the
updated model has a consistently lower accuracy on ID test
samples than the original model.

4. Proposed Methods
In this paper, we propose an Efficient Anti-forgetting Test-
time Adaptation (EATA) method, which aims to improve
the efficiency of test-time adaptation (TTA) and tackle the
catastrophic forgetting issue brought by existing TTA strate-
gies simultaneously. As shown in Figure 1, EATA consists
of two strategies. 1) Sample-efficient entropy minimization
(c.f. Section 4.1) aims to conduct efficient adaptation rely-
ing on an active sample selection strategy. Here, the sample
selection process is to choose only active samples for back-
ward propagation and therefore improve the overall TTA
efficiency (i.e., less gradient backward propagation). To this
end, we devise an active sample selection score, denoted
by S(x), to detect those reliable and non-redundant test



Algorithm 1 The pipeline of proposed EATA.
Input: Test samples Dtest={xj}Mj=1, the trained model

fΘ(·), ID samples DF={xq}Qq=1, batch size B.
1: for a batch X={xb}Bb=1 in Dtest do
2: Calculate predictions ŷ for all x ∈ X via fΘ(·).
3: Calculate sample selection score S(x) via Eqn. (6).
4: Update model (Θ̃⊆Θ) with Eqn. (2) or Eqn. (8).
5: end for

Output: The predictions {ŷ}Mj=1 for all x ∈ Dtest.

samples from the test set for TTA. 2) Anti-forgetting weight
regularization (c.f. Section 4.2) seeks to alleviate knowl-
edge forgetting by enforcing that the parameters, important
for the ID domain, do not change too much in test-time
adaptation. In this way, the catastrophic forgetting issue can
be significantly alleviated. The pseudo-code of EATA is
summarized in Algorithm 1.

4.1. Sample Efficient Entropy Minimization

For efficient test-time adaptation, we propose an active sam-
ple identification strategy to select samples for backward
propagation. Specifically, we design an active sample selec-
tion score for each sample, denoted by S(x), based on two
criteria: 1) samples should be reliable for test-time adap-
tation, and 2) the samples involved in optimization should
be non-redundant. By setting S(x)=0 for non-active sam-
ples, namely the unreliable and redundant samples, we can
reduce unnecessary backward computation during test-time
adaptation, thereby improving the prediction efficiency.

Relying on the sample score S(x), following (Wang et al.,
2021; Zhang et al., 2021b), we use entropy loss for model
adaptations. Then, the sample-efficient entropy minimiza-
tion is to minimize the following objective:

min
Θ̃

S(x)E(x; Θ)= −S(x)
∑
y∈C

fΘ(y|x)logfΘ(y|x), (2)

where C is the model output space. Here, the entropy loss
E(·) is computed over a batch of samples each time (similar
to Tent (Wang et al., 2021)) to avoid a trivial solution, i.e.,
assigning all probability to the most probable class. For effi-
cient adaptation, we update Θ̃⊆Θ with the affine parameters
of all batch normalization layers.

Reliable Sample Identification. Our intuition is that dif-
ferent test samples produce various effects in adaptation.
To verify this, we conduct a preliminary study, where we
select different proportions of samples (the samples are
pre-sorted according to their entropy values E(x; Θ)) for
adaptation, and the resulting model is evaluated on all test
samples. From Figure 2, we find that: 1) adaptation on
low-entropy samples makes more contribution than high-
entropy ones, and 2) adaptation on test samples with very
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Figure 2. Effect of different test samples in test-time entropy mini-
mization (Wang et al., 2021). We adapt a model on partial samples
(top p% samples with the highest or lowest entropy values), and
then evaluate the adapted model on all test samples. Results are
obtained on ImageNet-C (Gaussian noise, level 3) and ResNet-50
(base accuracy is 27.6%). Introducing more samples with high en-
tropy values into adaptation will hurt the adaptation performance.

high entropy may hurt performance. The possible reason
is that predictions of high-entropy samples are uncertain,
so their gradients produced by entropy loss may be biased
and unreliable. Following this, we name these low-entropy
samples as reliable samples.

Based on the above observation, we propose an entropy-
based weighting scheme to identify reliable samples and
emphasize their contributions during adaptation. Formally,
the entropy-based weight is given by:

Sent(x) =
1

exp [E(x; Θ)− E0]
· I{E(x;Θ)<E0}(x), (3)

where I{·}(·) is an indicator function, E(x; Θ) is the entropy
of sample x, and E0 is a pre-defined threshold. The above
weighting function excludes high-entropy samples from
adaptation and assigns higher weights to test samples with
lower prediction uncertainties, allowing them to contribute
more to model updates. Note that evaluating Sent(x) does
not involve any gradient back-propagation.

Non-redundant Sample Identification. Although Eqn. (3)
helps to exclude partial unreliable samples, the remaining
test samples may still have redundancy. For example, given
two test samples that are mutually similar and both have a
lower prediction entropy than E0, we still need to perform
gradient back-propagation for each of them according to
Eqn. (3). However, this is unnecessary as these two samples
produce similar gradients for model adaptation.

To further improve efficiency, we propose to exploit the
samples that can produce different gradients for model adap-
tation. Recall that the entropy loss only relies on final model
outputs (i.e., classification logits), we further filter samples
by ensuring the remaining samples have diverse model out-



puts. To this end, one straightforward method is to save
the model outputs of all previously seen samples, and then
compute the similarity between the outputs of incoming test
samples and all saved model outputs for filtering. However,
this method is computational expensive at test time and
memory-consuming with the increase of test samples.

To address this, we exploit an exponential moving average
technique to track the average model outputs of all seen test
samples used for model adaptation. To be specific, given
a set of model outputs of test samples, the moving average
vector is updated recursively:

mt =

{
ȳ1, if t = 1
αȳt + (1− α)mt−1, if t > 1

, (4)

where ȳt = 1
n

∑n
k=1 ŷ

t
k is the average model prediction of

a mini-batch of n test samples at the iteration t, and α ∈
[0, 1]. Following that, given a new test sample x received at
iteration t > 1, we compute the cosine similarity between
its prediction fΘ(x) and the moving average mt−1 (i.e.,
cos(fΘ(x),m

t−1)), which is then used to determine the
diversity-based weight:

Sdiv (x) = I{cos(fΘ(x),mt−1)<ϵ}(x), (5)

where ϵ is a pre-defined threshold for cosine similarities.
The overall sample-adaptive weight is then given by:

S (x) = Sent (x) · Sdiv (x) , (6)

which combines both entropy-based (as in Eqn. 3) and
diversity-based terms (as in Eqn. 5). Since we only perform
gradient back-propagation for test samples with S(x) > 0,
the algorithm efficiency is further improved.

Remark. Given M test samples Dtest = {xj}Mj=1, the
total number of reduced backward computation is given
by Ex∼Dtest

[I{S(x)=0}(x)], which is jointly determined the
test data distribution Dtest, entropy threshold E0, and cosine
similarity threshold ϵ.

4.2. Anti-Forgetting with Fisher Regularization

In this section, we propose a new weighted Fisher regu-
larizer (called anti-forgetting regularizer) to alleviate the
catastrophic forgetting issue caused by test-time adapta-
tion, i.e., the performance of a test-time adapted model
may significantly degrade on in-distribution (ID) test sam-
ples. We achieve this through weight regularization, which
only affects the loss function and does not incur any addi-
tional computational overhead for model adaptation. To be
specific, we apply an importance-aware regularizer R to
prevent model parameters, important for the in-distribution
domain, from changing too much during the test-time adap-
tation process (Kirkpatrick et al., 2017):

R(Θ̃, Θ̃o) =
∑
θi∈Θ̃

ω(θi)(θi − θoi )
2, (7)

where Θ̃ are parameters used for model update and Θ̃o are
the corresponding parameters of the original model. ω(θi)
denotes the importance of θi and we measure it via the
diagonal Fisher information matrix as in elastic weight con-
solidation (Kirkpatrick et al., 2017). Here, the calculation
of Fisher information ω(θi) is non-trivial since we are inac-
cessible to any labeled training data. For the convenience of
presentation, we leave the details of calculating ω(θi) in the
next subsection.

After introducing the anti-forgetting regularizer, the final
optimization formula for our method can be formulated as:

min
Θ̃

S(x)E(x; Θ) + βR(Θ̃, Θ̃o), (8)

where β is a trade-off parameter, S(x) and E(x; Θ) are
defined in Eqn. (2).

Measurement of Weight Importance ω(θi). The calcula-
tion of Fisher information typically involves a set of labeled
ID training samples. However, in our problem setting, we
are inaccessible to training data and the test samples are
only unlabeled, which makes it non-trivial to measure the
weight importance. To conquer this, we first collect a small
set of unlabeled ID test samples {xq}Qq=1, and then use
the original trained model fΘ(·) to predict all these sam-
ples for obtaining the corresponding hard pseudo-label ŷq.
Following that, we construct a pseudo-labeled ID test set
DF = {xq, ŷq}Qq=1, based on which we calculate the fisher
importance of model weights by:

ω(θi) =
1

Q

∑
xq∈DF

( ∂

∂θoi
LCE(fΘo(xq), ŷq)

)2
, (9)

where LCE is the cross-entropy loss. Here, we only need to
calculate ω(θi) once before performing test-time adaptation.
Once calculated, we keep ω(θi) fixed and apply it to any
types of distribution shifts. Moreover, the unlabeled ID test
samples are collected based on out-of-distribution detection
techniques (Liu et al., 2020; Berger et al., 2021), which are
easy to implement. Note that there is no need to collect
too many ID test samples for calculating ω(θi), e.g., 500
samples are enough for ImageNet-C dataset. More empirical
studies regarding this can be found in Figure 4(b).

5. Experiments
We organize the experiments to answer following questions:
1) How does EATA compare with prior methods regarding
efficiency and accuracy? 2) Can EATA alleviate the forget-
ting that occurred after test-time adaptation? 3) How do
different components affect the performance of EATA?

Datasets and Models. We conduct experiments on three
benchmarks datasets for OOD generalization, i.e., CIFAR-
10-C, ImageNet-C (Hendrycks & Dietterich, 2019) (con-
tains corrupted images in 15 types of 4 main categories and



Table 2. Comparison with state-of-the-art methods on ImageNet-C with the highest severity level 5 regarding Corruption Error (%, ↓).
“GN” and “BN” denote group and batch normalization, respectively. “JT” denotes the model is jointly trained via supervised cross-entropy
and rotation prediction losses. The bold number indicates the best result and the underlined number indicates the second best result.

Noise Blur Weather Digital Average

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG #Forwards #Backwards

R-50 (GN)+JT 94.9 95.1 94.2 88.9 91.7 86.7 81.6 82.5 81.8 80.6 49.2 87.4 76.9 79.2 68.5 50,000 0
• TTT 69.0 66.4 66.6 71.9 92.2 66.8 63.2 59.1 81.0 49.0 38.2 61.1 50.6 48.3 52.0 50,000×21 50,000×20

R-50 (BN) 97.8 97.1 98.2 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.1 79.4 68.4 50,000 0
• TTA 95.9 95.1 95.5 87.5 91.8 87.1 74.2 86.0 80.9 78.7 47.0 87.6 85.4 75.4 66.4 50,000×64 0
• BN adaptation 84.5 83.9 83.7 80.0 80.0 71.5 60.0 65.2 65.0 51.5 34.1 75.9 54.2 49.3 58.9 50,000 0
• MEMO 92.5 91.3 91.0 80.3 87.0 79.3 72.4 74.7 71.2 67.9 39.0 89.0 76.2 67.0 62.5 50,000×65 50,000×64
• Tent 71.6 69.8 69.9 71.8 72.7 58.6 50.5 52.9 58.7 42.5 32.6 74.9 45.2 41.5 47.7 50,000 50,000
• Tent (episodic) 85.4 84.8 84.9 85.5 85.4 74.6 62.2 66.4 67.8 53.2 35.7 83.9 57.1 52.4 61.5 50,000×2 50,000

• ETA (ours) 64.9 62.1 63.4 66.1 67.1 52.2 47.4 48.1 54.2 39.9 32.1 55.0 42.1 39.1 45.1 50,000 26,031
• EATA (ours) 65.0 63.1 64.3 66.3 66.6 52.9 47.2 48.6 54.3 40.1 32.0 55.7 42.4 39.3 45.0 50,000 25,150
• EATA (lifelong) 65.0 61.9 63.2 66.2 65.8 52.7 46.8 48.9 54.4 40.3 32.0 55.8 42.8 39.6 45.3 50,000 28,243

each type has 5 severity levels) and ImageNet-R (Hendrycks
et al., 2021). We use ResNet-26 (R-26)/ResNet-50 (R-
50) (He et al., 2016) for CIFAR-10/ImageNet experiments.
The models are trained on CIFAR-10 or ImageNet training
set and then tested on clean or the above OOD test sets.

Compared Methods. We compare with following state-
of-the-art methods. Test-time Training (TTT) (Sun et al.,
2020) adapts a model via rotation prediction at test time,
but requires the model also being trained by rotation predic-
tion. Test-time Augmentation (TTA) (Ashukha et al., 2020)
predicts a sample via the average outputs of its different aug-
mentations. BN adaptation (Schneider et al., 2020) updates
batch normalization statistics on test samples. Tent (Wang
et al., 2021) minimizes the entropy of test samples during
testing. MEMO (Zhang et al., 2021b) maximizes the predic-
tion consistency of different augmented copies regarding a
given test sample. We denote EATA without weight regular-
ization in Eqn. (7) as efficient test-time adaptation (ETA).

For TTT, Tent, our ETA and EATA, the model is online
adapted through the entire evaluation of one given test
dataset (e.g., gaussian noise level 5 of ImageNet-C). Once
the adaptation on this dataset is finished, the model parame-
ters will be reset. For TTT (episodic) and Tent (episodic),
the model parameters will be reset immediately after each
optimization step of a test sample or batch. For EATA (life-
long) and Tent (lifelong), the model is online adapted and
the parameters will never be reset (as shown in Figure 3
(Right)), which is more challenging but practical.

Evaluation Metrics. 1) Clean accuracy/error (%) on origi-
nal in-distribution (ID) test samples, e.g., the original test im-
ages of ImageNet. Note that we measure the clean accuracy
of all methods via (re)adaptation; 2) Out-of-distribution
(OOD) accuracy/error (%) on OOD test samples, e.g., the
corruption accuracy on ImageNet-C; 3) The number of for-
ward and backward passes during the entire test-time adapta-
tion process. Note that the fewer #forwards and #backwards
indicate the less computation, leading to higher efficiency.

Table 3. Comparison on ImageNet-R. The base model is ResNet-
50 (using batchnorm) trained on original ImageNet training set.

Model Error (%) #Forwards #Backwards

Base Model 63.8 30,000 0
• TTA (Ashukha et al., 2020) 61.3(−2.5) 30,000×64 0
• BN (Schneider et al., 2020) 59.7(−4.1) 30,000 0
• MEMO (Zhang et al., 2021b) 58.8(−5.0) 30,000×65 30,000×64
• Tent (Wang et al., 2021) 57.7(−6.1) 30,000 30,000
• Tent (episodic) 61.0(−2.9) 30,000×2 30,000

• ETA (ours) 54.5(−9.3) 30,000 14,847
• EATA (ours) 54.8(−9.0) 30,000 14,800

Implementation Details. For test-time adaptation, we use
SGD as the update rule, with a momentum of 0.9, batch
size of 64, and learning rate of 0.005/0.00025 for CIFAR-
10/ImageNet (following Tent and MEMO). The entropy con-
stant E0 in Eqn. (3) is set to 0.4× lnC, where C is number
of task classes. The ϵ in Eqn. (6) is set to 0.4/0.05 for CIFAR-
10/ImageNet. The trade-off parameter β in Eqn. (8) is set to
1/2,000 for CIFAR-10/ImageNet to make two losses have
the similar magnitude. We use 2,000 samples to calculate
ω(θi) in Eqn. (9) which takes 2,000 additional forward-and-
backward passes. The moving average factor α in Eqn. (4)
is set to 0.1. More details are put in Supplementary.

5.1. Comparisons of OOD Performance and Efficiency

Results on ImageNet-C. We report the comparisons on
ImageNet-C with the highest severity level 5 in Table 2 and
put more results of other severity levels 1-4 into Supplemen-
tary due to the page limitation. From the results, our ETA
and EATA consistently outperform the considered methods
in all 15 corruption types regarding the classification error,
suggesting our effectiveness. With our sample-adaptive en-
tropy loss, ETA achieves a large performance gain over Tent
(e.g., 71.6% → 65.0% on Gaussian noise), verifying that
removing samples with unreliable gradients and tackling
samples differently benefits the test-time adaptation. More
critically, ETA outperforms TTT consistently (while Tent
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Figure 3. Comparison of prevent forgetting on ImageNet-C (severity level 5) with ResNet-50. We record the OOD corruption accuracy on
each corrupted test set and the ID clean accuracy (after OOD adaptation). In Left, the model parameters of both Tent and our EATA are
reset before adapting to a new corruption type. In Right, the model performs lifelong adaptation and the parameters will never be reset,
namely Tent (lifelong) and our EATA (lifelong). EATA achieves higher OOD accuracy and meanwhile maintains the ID clean accuracy.

Table 4. Comparison on CIFAR-10-C. Each result is averaged
over 15 different corruption types and 5 severity levels (totally 75).

Model Average
Error (%)

Average
#Forwards

Average
#Backwards

ResNet-26 (GroupNorm) 22.5 10,000 0
• TTA (Ashukha et al., 2020) 19.9(−2.6) 10,000×32 0
• MEMO (Zhang et al., 2021b) 19.6(−2.9) 10,000×33 10,000×32

ResNet-26 (GroupNorm)+JT 22.8 10,000 0
• TTT (Sun et al., 2020) 15.6(−7.2) 10,000×33 10,000×32
• TTT (episodic) 21.5(−1.3) 10,000×33 10,000×32

ResNet-26 (BatchNorm) 28.4 10,000 0
• Tent (Wang et al., 2021) 20.2(−8.2) 10,000 10,000

• ETA (ours) 19.4(−9.0) 10,000 8,192
• EATA (ours) 19.7(−8.7) 10,000 8,153

fails to achieve this), demonstrating the potential of fully
test-time adaptation methods, i.e., boosting OOD generaliza-
tion without altering the training process. Compared with
ETA, EATA and EATA (lifelong) achieve comparable OOD
performance (but prevent the forgetting on ID samples, see
Figure 3), showing that our anti-forgetting regularization
does not limit the learning ability during adaptation.

As for efficiency, the required average backward number of
our ETA is 26,031, which is much fewer than those methods
that need multiple data augmentations (i.e., TTT and MEMO
are 50,000×20 and 64). Compared with Tent, ETA reduces
the average #backward from 50,000 to 26,031, by excluding
samples with high prediction entropy and samples that are
similar out of test-time optimization. In this sense, our
method only needs to adapt for partial samples, resulting
in higher efficiency. Note that although optimization-free
methods (such as BN adaptation) do not need backward
updates, their OOD performances are limited.

Results on ImageNet-R and CIFAR-10-C. From Table 3,
our ETA yields 54.5% classification error on ImageNet-R

(-3.2% over the best counterpart method Tent) and only
needs 14,847 backward propagation (much fewer than other
learning-based test-time adaptation methods, e.g., MEMO
and Tent). The results on CIFAR-10-C are shown in Ta-
ble 4. Under the same base model (ResNet-26 with batch
normalization), ETA achieves lower average error than
Tent (19.4% vs. 20.2%) with less requirements of back-
propagation (8,192 vs. 10,000). Moreover, the performance
gain over the base model of ETA is larger than that of TTT,
i.e., -9.0% vs. -7.2% average error. These results are consis-
tent with the ones on ImageNet-C that ETA achieves higher
performance and improves the efficiency, further demon-
strating the effectiveness and superiority of our method.

5.2. Demonstration of Preventing Forgetting

In this section, we investigate the ability of our EATA in
preventing ID forgetting during test-time adaptation. The
experiments are conducted on ImageNet-C with ResNet-
50. We measure the anti-forgetting ability by comparing
the model’s clean accuracy (i.e., on original validation data
of ImageNet) before and after adaptation. To this end, we
first perform test-time adaptation on a given OOD test set,
and then evaluate the clean accuracy of the updated model.
Here, we consider two adaptation scenarios: i) the model
parameters will be reset before adapting to a new corrupted
test set; 2) the model parameters will never be reset (namely
lifelong adaptation), which is more challenging but practical.
We report the results of severity level 5 in Figure 3 and put
results of severity levels 1-4 into Supplementary.

From Figure 3, our EATA consistently outperforms Tent re-
garding the OOD corruption accuracy and meanwhile main-
tains the clean accuracy on ID data (in both two adaptation
scenarios), demonstrating our effectiveness. It is worth not-
ing that the performance degradation in lifelong adaptation
scenario is much more severe (see Figure 3 Right). More
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Figure 4. Ablation experiments on ImageNet-C (Gaussian noise,
severity level=5) with ResNet-50.

critically, in lifelong adaptation, both the clean and corrup-
tion accuracy of Tent decreases rapidly (until degrades to
0%) after adaptation of the first three corruption types, show-
ing that Tent in lifelong adaptation is not stable enough. In
contrast, during the whole lifelong adaptation process, our
EATA achieves good corruption accuracy and the clean ac-
curacy is also very close to the clean accuracy of the model
without any OOD adaptation (i.e., original clean accuracy,
tested using Tent). These results demonstrate the superiority
of EATA in terms of overcoming the forgetting on ID data.

5.3. Ablation Studies

Effect of Components in S(x) (Eqn. 6). Our EATA ac-
celerates test-time adaptation by excluding two types of
samples out of optimization: 1) samples with high predic-
tion entropy values (Eqn. 3) and 2) samples that are similar
(Eqn. 6). We ablate both of them in Table 5. Compared
with the baseline S(x)=1 (the same as Tent), introducing
Sent(x) in Eqn. (3) achieves lower error and fewer back-
wards (e.g., 65.7% (26,694) vs. 71.6% (50,000) on level
5). This verifies our motivation in Figure 2 that some high-
entropy samples may hurt the performance since their gradi-
ents are unreliable. When further removing some redundant
samples that are similar (Eqn. 6), our EATA further reduces
the number of back-propagation (e.g., 26,694→19,121 on
level 5) and achieves comparable OOD error (e.g., 65.0%

Table 5. Effectiveness of components in sample-adaptive weight
S(x) in EATA on ImageNet-C (Gaussian noise) with ResNet-50.

Method Level 3 Level 5
Error (%) #Backwards Error (%) #Backwards

Baseline (S(x)=1) 45.3 50,000 71.6 50,000
+Sent(x) (Eqn. 3) 43.0 37,943 65.7 26,694
+S(x) (Eqn. 6) 42.6 29,051 65.0 19,121

vs. 65.7%), demonstrating the effectiveness of our proposed
sample-efficient optimization strategy.

Entropy Constant E0 in Eqn. (3). We evaluate our EATA
with different E0, selected from {0.20, 0.25, 0.30, 0.35,
0.40, 0.45, 0.50, 0.55}× ln 103, where 103 is the class num-
ber of ImageNet. From Figure 4(a), our EATA achieves
excellent performance when E0 belongs to [0.4, 0.5]. Either
a smaller or larger E0 would hamper the performance. The
reasons are mainly as follows. When E0 is small, EATA
removes too many samples during adaptation and thus is un-
able to learn enough adaptation knowledge from the remain-
ing samples. When E0 is too large, some high-entropy sam-
ples would take part in the adaptation but contribute unreli-
able and harmful gradients, resulting in performance degra-
dation. As for larger E0 leads to more backward passes, we
set E0 to 0.4× ln 103 for the efficiency-performance trade-
off and fix the proportion of 0.4 for all other experiments.

Number of Samples for Calculating Fisher in Eqn. (9).
As described in Section 4.2, the calculation of Fisher in-
formation involves a small set of unlabeled ID samples,
which can be collected via existing OOD detection tech-
niques (Berger et al., 2021). Here, we investigate the effect
of #samples Q, selected from {200, 300, 500, 700, 1000,
1500, 2000, 3000}. From Figure 4(b), our EATA achieves
stable performance with Q ≥ 300, i.e., compared with ETA
(without regularization), the OOD performance is compa-
rable and the clean accuracy is much higher. These results
show that our EATA does not need to collect too many ID
samples, which are easy to obtain in practice.

5.4. More Discussions

Results on Single Sample Adaptation (Batch Size B = 1).
In our proposed methods, we conduct test-time learning
over a batch of test samples each time. When batch size B
equals to 1, directly applying Tent and our ETA may fail
(see Table 6), but it is not a very significant issue in practice.
Actually, one can address this by either maintaining a slid-
ing window {xi}ti=t−L including L previous samples and
the current test sample xt, or data augmentation techniques
adopted in existing single sample TTA methods ((Zhang
et al., 2021b; Khurana et al., 2021)). The first way is simple
to implement and incurs only minor extra costs. From Ta-
ble 6, our ETA with sliding window (ETA-wnd) works well
and consistently outperforms the Tent counterpart.



Table 6. Effectiveness of ETA under sliding window strategy (with
different window length L) for single sample adaptation. We report
corruption accuracy (%) on ImageNet-C (Gaussian noise, level 5).

Base ResNet-50 Tent ETA Tent-wnd
(L=32)

ETA-wnd
(L=32)

Tent-wnd
(L=64)

ETA-wnd
(L=64)

2.2 0.1 0.1 28.1 30.8 29.5 32.4

Table 7. Comparison with Tent (Wang et al., 2021) w.r.t. corruption
accuracy (%) with mixture of 15 corruption types on ImageNet-C.

Severity Base (ResNet-50) Tent EATA (ours)

Level=3 39.8 41.5(+1.7) 52.6(+12.8)

Level=5 18.0 2.3(−15.7) 26.6(+8.6)

Table 8. Effectiveness of EATA with different backbone models.
We report the corruption accuracy (%) on ImageNet-C (Gaussian
noise, severity level 5).

Base ResNet-50 (2.2) ResNet-101 (3.5) ResNet-152 (3.6)

Tent 28.4(+26.2) 32.5(+29.0) 33.7(+30.1)

EATA 35.0(+32.8) 38.8(+35.3) 40.2(+36.6)

Wall-clock Time Speed-up of EATA. In the current Py-
Torch version, gradient computation is conducted on the
full mini-batch, even if instance-wise masks are applied.
We achieve wall-time speed-up with one forward-only pass
with B samples, and one forward-and-backward pass with
B′ samples selected by ETA/EATA. For ResNet-50 on
ImageNet-C (Gaussian noise, level=5, 50,000 images) with
one Tesla V100 GPU, the actual run time is 113s for Tent
(28.6% accuracy) and 102s for EATA (35.1% accuracy).
Actually, this is a more engineering problem, and an ideal
implementation (forward with B samples and backward
with B′ samples) should further speed up the computation.

Additional Memory by Fisher Regularizer. Since we only
regularize the affine parameters of BN layers, EATA needs
very little extra memory. For ResNet-50 on ImageNet-C,
the extra GPU memory at run time is only 9.8 MB, which is
much less than that of Tent with batch size 64 (5,675 MB).

EATA under Mixed-and-Shifted Distributions. We evalu-
ate Tent and our EATA on mixed ImageNet-C (level=3 or
5) that consists of 15 different corruption types/distribution
shifts (totally 750k images). Results in Table 7 show the sta-
bility of EATA on large-scale and complex TTA scenarios.

EATA with Large Network Models. In Table 8, we ap-
ply EATA to pre-trained models with different computa-
tional complexities. From the results, even for large mod-
els (ResNet-101 and ResNet-152) that tend to show over-
confident, our EATA still works well.

Table 9. Comparison with Tent (Wang et al., 2021) w.r.t. corrup-
tion accuracy (%) with fewer (N ) test samples on ImageNet-C
(Gaussian noise, severity level 5).

Method N=256 N=512 N=1,024 N=2,048 N=4,096 N=10,000

Tent 13.7 18.2 14.8 15.2 17.5 20.9
EATA 14.8 20.1 16.3 18.7 23.5 27.6

EATA with Different Number of Test Samples. We inves-
tigate the effect of the total number of test samples (N ) in
EATA, where the fewer samples are sampled from the entire
test set. From Table 9, EATA works well and consistently
outperforms Tent counterpart, regardless of the number of
test samples. Meanwhile, if there are many test samples,
EATA would benefit more, i.e., larger accuracy gain.

6. Conclusion
In this paper, we propose an efficient anti-forgetting test-
time adaptation method, to improve the performance of
pre-trained models on a potentially shifted test domain.
Specifically, we devise a sample-efficient entropy minimiza-
tion strategy that selectively performs test-time optimization
with reliable and non-redundant samples. This improves
the adaptation efficiency and meanwhile boosts the out-
of-distribution performance. In addition, we introduce a
Fisher-based anti-forgetting regularizer into test-time adap-
tation. With this loss, a model can be adapted continu-
ally without performance degradation on in-distribution test
samples, making test-time adaptation more practical for
real-world applications. Extensive experimental results on
several benchmark datasets demonstrate the effectiveness of
our proposed method.
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Supplementary Materials for
“Efficient Test-Time Model Adaptation without Forgetting”

In the supplementary, we provide more implementation details and more experimental results of our EATA. We organize our
supplementary as follows.

• In Section A, we provide more experimental details of our proposed EATA.

• In Section B, we show more experimental results to compare the out-of-distribution performance and efficiency with
state-of-the-art methods on ImageNet-C with different corruption types and severity levels.

• In Section C, we give more experimental results to demonstrate the anti-forgetting ability of our EATA.

• In Section D, we provide more discussions on related training-time robustification studies.

A. More Implementation Details of EATA
A.1. More Details on Datasets

Following the settings of Tent (Wang et al., 2021) and MEMO (Zhang et al., 2021b), we conduct experiments on three
benchmark datasets for out-of-distribution generalization, i.e., CIFAR-10-C, ImageNet-C (Hendrycks & Dietterich, 2019)
and ImageNet-R (Hendrycks et al., 2021).

CIFAR-10-C and ImageNet-C consist of corrupted versions of the validation images on CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009), respectively. The corruptions include 15 diverse types of 4 main categories (i.e.,
noise, blur, weather, and digital). Each corruption type has 5 different levels of severity.

ImageNet-R contains 30,000 images with various artistic renditions of 200 ImageNet classes, which are primarily collected
from Flickr and filtered by Amazon MTurk annotators.

A.2. More Experimental Protocols

Our EATA. Following TTT (Sun et al., 2020) and Tent (Wang et al., 2021), we use ResNet-26 and ResNet-50 for CIFAR-10
and ImageNet experiments, respectively. The models are trained on the original CIFAR-10 or ImageNet training set and
then tested on clean or the aforementioned OOD test sets. For fair comparison, the parameters of ResNet-50 are directly
obtained from the torchvision1 library. ResNet-26 is trained via the official code of TTT by the same hyper-parameters,
replacing the group norm with the batch norm, and removing the rotation head. For test time adaptation, we use SGD as
the update rule, with a momentum of 0.9, batch size of 64, and learning rate of 0.005/0.00025 for CIFAR-10/ImageNet
(following Tent and MEMO). The entropy constant E0 in Eqn. (3) is set to 0.4× lnC, where C is number of task classes.
The ϵ in Eqn. (6) is set to 0.4/0.05 for CIFAR-10/ImageNet. The trade-off parameter β in Eqn. (8) is set to 1/2,000 for
CIFAR-10/ImageNet to make two losses have the similar magnitude. We use 2,000 samples to calculating ω(θi) in Eqn. (9).

Compared Methods. For TTA (Ashukha et al., 2020), BN adaptation (Schneider et al., 2020) and MEMO (Zhang et al.,
2021b), the hyper-parameters follow their original papers or MEMO. Specifically, the augmentation size of TTA (Ashukha
et al., 2020) is set to 32 and 64 for CIFAR-10 and ImageNet, respectively. For BN adaptation (Schneider et al., 2020),
both the batch size B and prior strength N are set to 256. The hyper-parameter settings of MEMO (Zhang et al., 2021b)
can be found in their original paper. For Tent (Wang et al., 2021), we use SGD as the update rule with a momentum of
0.9. The batch size is 64 for both ImageNet and CIFAR-10 experiments. The learning rate is set to 0.00025 and 0.005
ImageNet and CIFAR-10, respectively. Note that the hyper-parameters of Tent are totally the same as our EATA for a fair
comparison. For TTT (Sun et al., 2020), we strictly follow their original settings except for the augmentation size at test

1https://github.com/pytorch/vision

https://github.com/pytorch/vision
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time for ImageNet experiments. According to TTT’s implementation, the augmentation size is set to 64, which, however, is
very time-consuming (e.g., about 12 GPU hours on a single Tesla V100 GPU on ImageNet-C with a specific corruption type
and severity level). In our implementation, we decrease this augmentation size to 20, which has only a slight performance
difference compared with augmentation size 64. For example, the performances of TTT on ImageNet-C (Gaussian noise,
severity level 5) with ResNet-18 are 26.2% (64) vs. 26.0% (20). We recommend the original papers of the above methods to
readers for more implementation details.

B. More Results on Out-of-distribution Performance and Efficiency
In Table 12, we provide more results to compare our ETA and EATA with state-of-the-art methods on ImageNet-C with the
severity level 1-4. Our ETA and EATA constantly outperform the state-of-the-art methods (e.g., TTA, MEMO, and Tent)
in most image corruption types of various severity levels. The performance gain mainly comes from the removal of the
high-entropy test samples, since these samples may contribute unreliable and harmful gradients during test-time adaptation.

In Figure 5, we show the number of backward propagation of our ETA on ImageNet-C with different corruption types
and severity levels. Across various corruption types, our ETA shows great superiority over existing methods in terms of
adaptation efficiency. Compared with MEMO (50,000×64) and Tent (50,000), our ETA only requires 31,741 backward
passes (averaged over 15 corruption types) when the severity level is set to 3. The reason is that we exclude some unreliable
and redundant test samples out of test-time optimization. In this case, we only need to perform backward computation on
those remaining test samples, leading to improved efficiency.

Comparison with Tent using Different Learning Rates. In our sample-adaptive weight S(x) in Eqn. (6), each test sample
has a specific weight S(x) and the value of S(x) is always larger than 1. In this sense, training with sample-adaptive
weight S(x) indeed has the same effect as training with larger learning rates. Therefore, we compare our EATA with the
baseline (Tent) using different learning rates. We increase the learning rate from 2.5× 10−4 (which is the default of Tent) to
25.0× 10−4 and report results in Table 10.

With the learning rate increasing from 2.5 × 10−4 to 10.0 × 10−4, the error of Tent decreases from 45.3% to 43.9%,
indicating that a larger learning rate may enhance the performance in some cases. However, when the learning rate becomes
larger to 20.0× 10−4, the performance of Tent degrades. More critically, our EATA method outperforms Tent with varying
learning rates. These results verify that simply enlarging the learning rate is not able to achieve competitive performance
with our proposed sample-adaptive adaptation method, demonstrating our superiority.

Table 10. Comparison with Tent under different learning rates (×10−4) on ImageNet-C (Gaussian noise) regarding Error (%).

EATA (ours) Tent (Wang et al., 2021)

Severity lr = 2.5 lr = 2.5 lr = 10.0 lr = 20.0 lr = 25.0

Level 3 42.6 45.3 43.9 44.4 45.1
Level 5 65.0 71.6 72.2 83.6 87.1

EATA under Different Random Orders. Table 11 records EATA’s performance (mean & stdev.) on randomly shuffled test
samples with 10 different random seeds (from 2020 to 2029). From the results, EATA performs consistently across different
random orders, showing the stability of EATA.

Table 11. The mean and stdev. of corruption accuracy (%) of EATA over 10 random orders, on ImageNet-C (level 5) with ResNet-50.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Avg.

34.9±0.2 36.9±0.1 35.8±0.2 33.6±0.3 33.3±0.2 47.2±0.3 52.7±0.1 35.8±0.2

C. More Results on Prevent Forgetting
In this section, we provide more results to demonstrate the effectiveness of our EATA in preventing forgetting. We report the
comparison results of EATA (lifelong) vs. Tent (lifelong) and EATA vs. Tent in Figures 6 and 7, respectively. In the lifelong
adaptation scenario, Tent suffers more severe ID performance degradation than that of reset adaptation (i.e., Figure 7),
showing that the more optimization steps, the more severe forgetting. Moreover, with the increase of the severity level, the
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ID clean accuracy degradation of Tent increases accordingly. This result indicates that the OOD adaptation with more severe
distribution shifts will result in more severe forgetting. In contrast, our methods achieve higher OOD corruption accuracy
and meanwhile maintain the ID clean accuracy (competitive to the original accuracy that tested before any OOD adaptation)
in both two adaptation scenarios (reset and lifelong). These results are consistent with that in the main paper and further
demonstrate the effectiveness of our proposed anti-forgetting weight regularization.

D. More Discussions on Related Training-Time Robustification
To defend against distribution shifts, many prior studies seek to enlarge the training data distribution to enable it to cover the
possible shift that might be encountered at test time, such as adversarial training strategies (Wong et al., 2020; Rusak et al.,
2020; Madaan et al., 2021), various data augmentation techniques (Lim et al., 2019; Hendrycks et al., 2020; Li et al., 2021;
Hendrycks et al., 2021; Yao et al., 2022) and searching/enhancing sub-networks of a deep model (Zhang et al., 2021a; Guo
et al., 2022). However, it is hard to anticipate all possible test shifts at training time. In contrast, we seek to conquer this test
distribution shift by directly learning from test data.
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Table 12. Comparisons with state-of-the-art methods on ImageNet-C with the severity levels 1-4 regarding Error (%). “GN” and “BN”
denote group normalization and batch normalization, respectively. “JT” denotes the model is jointly trained via supervised cross-entropy
loss and rotation prediction loss. The bold number indicates the best result and the underlined number indicates the second best result.

Noise Blur Weather Digital Average

Severity level=1 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG #Forwards #Backwards

R-50 (GN)+JT 40.9 43.4 52.4 47.4 48.2 39.9 56.2 48.4 45.5 45.2 31.6 35.5 36.7 36.7 39.2 50,000 0
• TTT 37.5 37.4 39.4 41.8 39.7 37.2 43.9 41.7 40.5 36.3 31.0 32.9 35.0 33.8 36.2 50,000×21 50,000×20

R-50 (BN) 40.6 42.8 52.0 40.6 46.0 35.3 47.5 45.4 38.7 38.2 26.0 35.1 33.4 35.9 33.8 50,000 0
• TTA 40.6 42.6 52.5 44.4 46.6 38.0 45.6 48.0 42.0 40.6 28.8 35.6 33.9 37.7 36.8 50,000×64 0
• BN adaptation 34.6 36.1 41.2 35.7 35.2 30.8 37.6 38.2 35.2 31.3 25.4 28.5 30.8 28.7 30.5 50,000 0
• MEMO 36.9 39.5 46.3 38.2 41.1 32.8 42.7 40.4 36.8 35.3 25.8 31.3 31.2 32.4 32.9 50,000×65 50,000×64
• Tent 32.2 32.7 36.2 33.8 32.8 29.7 34.6 35.1 33.6 29.8 25.6 28.0 30.1 28.0 29.8 50,000 50,000
• Tent (episodic) 36.0 37.8 41.7 38.8 38.1 32.0 39.3 40.5 37.3 32.6 26.5 29.8 31.7 29.9 32.1 50,000×2 50,000
• ETA (ours) 31.7 31.8 34.7 32.9 32.2 29.6 34.1 33.6 33.3 29.5 26.0 28.2 30.3 28.1 29.9 50,000 35,379
• EATA (ours) 31.5 31.8 34.9 33.0 32.1 29.2 33.8 33.6 33.0 29.4 25.7 27.7 29.9 27.8 29.6 50,000 34,898
• EATA (lifelong) 31.5 31.7 34.6 32.9 32.0 29.1 33.8 33.6 33.0 29.3 25.8 27.6 29.9 27.8 29.6 50,000 36,675

Severity level=2 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG #Forwards #Backwards

R-50 (GN)+JT 50.1 55.0 60.0 55.8 61.6 49.9 65.5 68.9 63.1 52.0 33.5 38.6 58.0 39.4 42.8 50,000 0
• TTT 42.0 42.5 44.3 47.7 53.3 42.7 48.2 50.4 56.6 38.2 31.8 34.3 49.4 34.7 38.3 50,000×21 50,000×20

R-50 (BN) 53.8 57.9 64.2 48.0 59.6 45.7 57.4 68.1 55.9 44.1 27.6 41.6 55.2 35.9 37.5 50,000 0
• TTA 52.9 56.9 62.4 53.0 60.4 49.3 54.4 71.5 60.6 46.9 30.7 40.0 53.8 41.1 40.3 50,000×64 0
• BN adaptation 42.3 45.6 49.7 43.0 44.5 37.4 44.1 53.1 47.6 34.1 26.6 30.6 47.2 29.7 33.8 50,000 0
• MEMO 47.1 51.7 55.9 44.8 53.4 41.3 51.8 58.6 51.6 40.2 27.2 35.5 51.0 33.6 36.2 50,000×65 50,000×64
• Tent 37.2 38.5 41.8 39.5 39.4 34.0 39.2 44.8 43.6 31.6 26.6 29.7 44.1 29.0 32.1 50,000 50,000
• Tent (episodic) 44.0 47.2 50.5 48.0 49.3 39.2 46.4 55.0 50.7 35.5 27.6 32.3 49.1 32.2 36.1 50,000×2 50,000
• ETA (ours) 35.8 36.5 39.5 37.7 37.8 33.1 37.7 41.4 41.7 30.9 27.0 29.2 43.0 28.6 31.8 50,000 33,363
• EATA (ours) 35.9 36.5 39.6 37.9 37.8 33.1 37.4 41.7 41.7 30.7 26.7 29.1 42.6 28.4 31.4 50,000 32,754
• EATA (lifelong) 35.9 36.2 39.2 37.7 37.6 33.0 37.3 41.6 41.6 30.8 26.6 29.1 42.6 28.5 31.4 50,000 34,922

Severity level=3 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG #Forwards #Backwards

R-50 (GN)+JT 64.4 69.3 66.7 71.5 83.2 65.8 71.4 65.5 73.9 61.3 36.7 45.2 44.1 50.2 45.5 50,000 0
• TTT 48.5 48.9 48.3 57.7 67.1 50.7 50.7 51.2 70.3 41.0 33.3 37.6 36.3 38.4 39.9 50,000×21 50,000×20

R-50 (BN) 72.4 75.0 74.9 62.0 83.1 62.3 64.8 64.8 67.9 53.4 30.4 54.0 44.4 53.8 40.7 50,000 0
• TTA 70.4 72.7 70.0 68.7 83.7 66.2 62.0 67.9 72.7 56.3 33.8 47.7 47.8 51.8 43.4 50,000×64 0
• BN adaptation 54.7 57.2 56.6 57.8 63.6 48.9 48.8 52.2 57.5 38.2 28.3 35.4 33.1 36.0 36.6 50,000 0
• MEMO 62.5 65.7 63.3 58.8 76.7 55.9 58.9 55.6 62.6 47.9 29.5 44.0 41.3 45.0 39.2 50,000×65 50,000×64
• Tent 45.3 45.9 46.6 51.1 53.9 41.2 42.4 44.4 51.5 34.2 27.9 32.9 30.7 32.6 34.3 50,000 50,000
• Tent (episodic) 56.6 58.8 57.5 64.9 69.5 51.5 51.0 54.4 60.3 39.9 29.5 37.7 35.3 37.5 39.1 50,000×2 50,000
• ETA (ours) 42.4 42.4 43.3 47.3 49.6 38.9 40.5 41.2 48.5 33.1 28.1 32.0 30.5 31.7 33.6 50,000 31,741
• EATA (ours) 42.6 42.9 43.7 47.4 49.8 38.8 40.4 41.6 48.7 32.7 27.7 31.7 30.0 31.8 33.3 50,000 31,068
• EATA (lifelong) 42.6 42.4 43.2 47.2 49.6 38.7 40.2 41.6 48.8 32.9 27.8 31.7 30.1 31.7 33.4 50,000 33,469

Severity level=4 Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG #Forwards #Backwards

R-50 (GN)+JT 81.4 87.6 82.2 81.8 87.8 80.2 77.2 76.8 75.9 66.9 41.8 64.2 54.8 68.0 54.7 50,000 0
• TTT 57.5 58.7 57.1 64.8 84.9 60.5 54.4 57.3 73.1 43.1 35.5 46.0 39.6 44.5 45.1 50,000×21 50,000×20

R-50 (BN) 89.0 92.1 91.8 73.5 87.2 78.1 71.6 75.9 70.1 59.6 34.9 79.5 57.8 71.1 52.5 50,000 0
• TTA 85.9 89.5 86.1 79.8 88.4 80.5 67.9 79.3 74.4 62.9 39.3 65.8 61.0 66.2 53.0 50,000×64 0
• BN adaptation 69.3 74.1 71.2 70.3 70.5 63.0 54.8 62.0 58.9 41.5 30.8 50.0 38.7 44.7 46.0 50,000 0
• MEMO 78.5 83.3 78.8 71.0 82.2 71.2 67.6 65.9 64.5 53.3 33.4 66.7 52.8 58.6 48.7 50,000×65 50,000×64
• Tent 56.0 59.4 57.3 61.7 60.6 50.9 46.5 51.4 53.1 36.5 30.0 43.3 34.0 37.9 39.6 50,000 50,000
• Tent (episodic) 70.7 75.5 72.0 77.3 76.5 66.3 57.2 64.1 61.8 43.1 32.0 56.4 41.4 46.5 48.9 50,000×2 50,000
• ETA (ours) 51.5 53.4 52.5 57.1 55.4 46.6 43.7 46.9 49.7 35.1 29.8 39.4 33.2 36.0 38.2 50,000 29,240
• EATA (ours) 52.3 54.2 53.0 57.0 55.5 46.6 43.7 46.8 49.9 34.7 29.7 39.8 33.1 36.4 38.3 50,000 28,423
• EATA (lifelong) 52.3 53.0 52.2 56.4 55.1 46.6 43.4 47.2 49.7 34.8 29.8 40.0 33.1 36.5 38.5 50,000 31,141
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Figure 5. Comparison between ETA and Tent in terms of the number of backward propagation on ImageNet-C with different corruption
types and severity levels.
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Figure 6. Comparison of prevent forgetting on ImageNet-C (severity levels 1-4) with ResNet-50. We record the OOD corruption accuracy
on each corrupted test set and the associated ID clean accuracy (after OOD adaptation). The model performs lifelong adaptation, in which
the model parameters will never be reset.
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Figure 7. Comparisons of prevent forgetting on ImageNet-C (severity levels 1-4) with ResNet-50. We record the OOD corruption accuracy
on each corrupted test set and the associated ID clean accuracy (after OOD adaptation). The model parameters of both Tent and our EATA
are reset before adapting to a new corruption type.


