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Uncertainty-Calibrated Test-Time Model
Adaptation without Forgetting

Mingkui Tan*, Guohao Chen*, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Peilin Zhao, and Shuaicheng Niu†

Abstract—Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given
model w.r.t. any testing sample. This task is particularly important when the test environment changes frequently. Although some recent
attempts have been made to handle this task, we still face two key challenges: 1) prior methods have to perform backpropagation for each
test sample, resulting in unbearable optimization costs to many applications; 2) while existing TTA solutions can significantly improve
the test performance on out-of-distribution data, they often suffer from severe performance degradation on in-distribution data after TTA
(known as catastrophic forgetting). To this end, we have proposed an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method
which develops an active sample selection criterion to identify reliable and non-redundant samples for test-time entropy minimization. To
alleviate forgetting, EATA introduces a Fisher regularizer estimated from test samples to constrain important model parameters from
drastic changes. However, in EATA, the adopted entropy loss consistently assigns higher confidence to predictions even when the samples
are underlying uncertain, leading to overconfident predictions that underestimate the data uncertainty. To tackle this, we further propose
EATA with Calibration (EATA-C) to separately exploit the reducible model uncertainty and the inherent data uncertainty for calibrated TTA.
Specifically, we compare the divergence between predictions from the full network and its sub-networks to measure the reducible model
uncertainty, on which we propose a test-time uncertainty reduction strategy with divergence minimization loss to encourage consistent
predictions instead of overconfident ones. To further re-calibrate predicting confidence on different samples, we utilize the disagreement
among predicted labels as an indicator of the data uncertainty. Based on this, we devise a min-max entropy regularization to selectively
increase and decrease predicting confidence for confidence re-calibration. Note that EATA-C and EATA are different on the adaptation
objective, while EATA-C still benefits from the active sample selection criterion and anti-forgetting Fisher regularization proposed in EATA.
Extensive experiments on image classification and semantic segmentation verify the effectiveness of our proposed methods.

Index Terms—Out-of-Distribution Generalization, Test-Time Adaptation, Confidence Calibration, Catastrophic Forgetting.

✁

1 INTRODUCTION

DEEP neural networks (DNNs) have achieved excellent per-
formance in many challenging tasks, including image clas-

sification [1], video recognition [2], [3], [4], [5], and many other
areas [6], [7], [8]. One prerequisite behind the success of DNNs
is that the test samples are drawn from the same distribution as
the training data, which, however, is often violated in many real-
world applications. In practice, test samples may encounter natural
variations or corruptions (also called distribution shift), such as
changes in lighting resulting from weather changes and unexpected
noises resulting from sensor degradation [9], [10]. Unfortunately,
models are often very sensitive to such distribution shifts and suffer
severe performance degradation.

Recently, several attempts [11], [12], [13], [14], [15], [16]
have been proposed to handle the distribution shifts by online
adapting a model at test time (called test-time adaptation). Test-time
training (TTT) [11] first proposes this pipeline. Given a test sample,
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TTT first fine-tunes the model via rotation classification [17] and
then makes a prediction using the updated model. Without the
need of training an additional self-supervised head, Tent [12] and
MEMO [14] further leverage the prediction entropy for test-time
adaptation, in which the adaptation only involves test samples and
a trained model. Although recent test-time adaptation methods are
effective at handling test shifts, in real-world applications, they still
suffer from the following limitations.

Latency Constraints. Since TTA adapts a given model during
inference, the adaptation efficiency is paramount in scenarios where
latency is a critical factor. Previous methods, such as Test-Time
Training (TTT) [11] and MEMO [14], often require performing
multiple backward propagations for each test sample. However,
the computation-intensive nature of backward propagation renders
these methods impractical in situations where low latency is non-
negotiable or computational resources are limited.

Forgetting on In-Distribution Samples. Prior methods often
focus on boosting the performance of a trained model on out-of-
distribution (OOD) test samples, ignoring that the model after test-
time adaptation suffers a severe performance degradation (named
forgetting) on in-distribution (ID) test samples (see Figure 3). An
eligible test-time adaptation approach should perform well on both
OOD and ID test samples simultaneously, since test samples often
come from both ID and OOD domains in real-world applications.

Over-Confident Predictions. Existing methods like Tent [12]
and SAR [18] primarily rely on test-time entropy minimization for
model adaptation, which greedily enhances the model’s confidence
and minimizes the predictive uncertainty for test samples, without
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TABLE 1
Characteristics of problem settings that adapt a trained model to a potentially shifted test domain. ‘Offline’ adaptation assumes access to the entire

source or target dataset, while ‘Online’ adaptation can predict a single or batch of incoming test samples immediately.

Setting Source Data Target Data Training Loss Testing Loss Offline Online Source Acc. Prediction Uncertainty

Fine-tuning ! xt, yt L(xt, yt) – " ! Not Considered Not Considered
Continual learning ! xt, yt L(xt, yt) – " ! Maintained Not Considered
Unsupervised domain adaptation xs, ys xt L(xs, ys) + L(xs,xt) – " ! Maintained Not Considered
Test-time training xs, ys xt L(xs, ys) + L(xs) L(xt) ! " Not Considered Not Considered
Fully test-time adaptation (FTTA) ! xt ! L(xt) ! " Not Considered Not Considered

EATA (ours) ! xt ! L(xt) ! " Maintained Not Considered
EATA-C (ours) ! xt ! L(xt) ! " Maintained Calibrated

distinguishing between model-induced and data-induced uncertain-
ties. Consequently, even when the input data is naturally complex
or highly corrupted (i.e., with irreducible data uncertainty), the
model is forced to make one-hot confident predictions where it
should remain uncertain, leading to over-confident and potentially
incorrect outputs. This phenomenon is particularly concerning
in high-risk applications, such as autonomous driving [19] and
medical diagnosis [20], posing potential safety risks.

To address the efficiency and forgetting issue, we have proposed
an Efficient Anti-forgetting Test-time Adaptation (EATA) method
consisting of a sample-efficient optimization strategy and a weight
regularizer. EATA excludes unreliable samples characterized by
high entropy values and redundant samples that are highly similar
throughout the adaptation. In this case, we can reduce the total
number of backward updates of test data streaming (improving
efficiency) and enhance the model performance on OOD samples.
Furthermore, EATA devises an anti-forgetting regularizer to prevent
the important weights of the model from changing a lot during
the adaptation, where the weights’ importance is measured based
on Fisher information [21] via a small set of test samples. With
this regularization, the model can continually adapt to OOD test
samples without performance degradation on ID test samples.

To mitigate overconfidence, we differentiate between various
origins of uncertainty in TTA: 1) Reducible model uncertainty,
which arises from not knowing the optimal model parameters to
describe the data due to insufficient training [22]; 2) Irreducible
data uncertainty that arises from inherent noise or variability in the
data, cannot be reduced by additional training [23]. Based on their
characteristics, we aim to reduce the model uncertainty at test time
for domain adaptation, while accurately reflecting data uncertainty
in model predictions to ensure confidence calibration.

To this end, we further devise EATA with Calibration, namely
EATA-C. Specifically, EATA-C estimates model uncertainty by
measuring the divergence between predictions from the full
network and its randomly sampled sub-networks. By minimizing
this divergence, our EATA-C reduces model uncertainty and
promotes consistent, rather than overconfident, predictions for
model adaptation during testing. Additionally, we introduce a data
uncertainty indicator based on prediction disagreement, which
effectively detects ambiguous samples near decision boundaries
where conflicting predictions are more likely to occur. We then
incorporate a min-max entropy regularizer to selectively adjust the
prediction confidence based on this data uncertainty estimation.
Note that EATA-C differs from EATA on the adaptation objective,
while it still benefits from the active sample selection criterion
and anti-forgetting Fisher regularization proposed in EATA. We
summarize our main contributions as follows.

• We propose an Efficient Anti-forgetting Test-time Adaptation
(EATA) method. Specifically, we reveal that test samples con-
tribute differently to adaptation, and develop an active sample
identification scheme to filter out non-reliable and redundant
test samples from adaptation, thereby improving TTA efficiency.
Moreover, we extend the label-dependent Fisher regularizer to
test samples with pseudo label generation, which prevents drastic
changes in important model weights and helps alleviate the issue
of model forgetting on in-distribution test samples.

• We further introduce EATA with Calibration (EATA-C), which
differentiates between reducible and irreducible uncertainty
during testing to design a calibration-driven learning objective.
Specifically, EATA-C estimates model uncertainty using the
divergence between full network and sub-network predictions,
incorporating a consistency loss to reduce this uncertainty for
adaptation. Regarding data uncertainty, EATA-C leverages predic-
tion disagreements and applies min-max entropy regularization
to selectively adjust confidence for calibration enhancement.

• We demonstrate that our proposed EATA method improves both
the performance and efficiency of test-time adaptation and also
alleviates the long-neglected catastrophic forgetting issue. Our
EATA-C further achieves better performance and calibration,
with computational and memory efficiency comparable to EATA.

A short version of this work was published in ICML 2022 [24].
This paper extends our preliminary version from the following
aspects: 1) We explore the calibrated test-time adaptation, which
aims to provide calibrated predicting confidence that reflects the
true likelihood of correctness during unsupervised adaptation; 2) To
solve the over-confident issue, we develop a test-time consistency
loss that leverages the reducible model uncertainty for calibrated
uncertainty reduction, and devise a min-max entropy regularizer
to re-calibrate predicting confidence based on the inherent data
uncertainty; 3) We provide analyses about the impact of different
uncertainty reduction strategies, empirically verifying that our
consistency loss overcomes the issue of over-fitting and over-
confident in entropy minimization loss when adapting to the test
data; 4) We provide extensive new empirical evaluations on image
classification and semantic segmentation tasks with various model
architectures, demonstrating that EATA-C achieves substantially
better performance and calibration over EATA, e.g., improving
accuracy by 6.5%, while reducing calibration error by relatively
64.9% on ImageNet-C dataset with ViT-Base [25].

2 RELATED WORK

We divide the discussion on related works based on the different
adaptation settings summarized in Table 1 and further review
existing methods for model’s uncertainty calibration.
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Fig. 1. An illustration of our proposed Efficient Anti-forgetting Test-time Adaptation with Calibration (EATA-C) method. During the test-time adaptation
process, we update only the affine parameters of normalization layers in f! and keep all other parameters frozen. Given a batch of incoming test
samples X={xb}Bb=1, we select the reliable and non-redundant ones Xs with an active sample selection criterion to conduct model update, thereby
enhancing adaptation efficiency. These samples are then used for calculating the proposed unidirectional consistency loss to minimize the model
uncertainty. Additionally, we devise a min-max entropy regularizer for confidence re-calibration based on the data uncertainty of each sample. Lastly,
we introduce an anti-forgetting regularizer which prevents the important model parameters in ! from changing too much.

Test-Time Adaptation (TTA) aims to improve model accuracy
on OOD test data through model adaptation with test samples.
Existing test-time training methods, e.g., TTT [11], TTT++ [13],
TTT-MAE [26], and MT3 [27], jointly train a source model via both
supervised and self-supervised objectives, and then adapt the model
via self-supervised objective at test time. This pipeline, however,
necessitates both self-supervised head and test data in adaptation,
while training such self-supervised head can be computation-
consuming [26]. To address this, some methods have been proposed
to adapt a model with only test data, including batchnorm statistics
adaptation [28], [29], [30], prediction consistency maximization
over different augmentations [31], and classifier adjustment [32].
Specifically, Tent [12] updates the model to minimize the entropy of
predictions at test time. MEMO [14] further augments test samples
for marginal entropy minimization to enhance robustness. Our work
also alleviates the dependency on self-supervision heads and seeks
to address the key limitations of prior works (i.e., efficiency hurdle,
catastrophic forgetting, and overconfidence) to make TTA more
practical in real-world applications.
Continual Learning (CL) aims to help the model remember the
essential concepts that have been learned previously, alleviating the
catastrophic forgetting issue when learning a new task [21], [33],
[34], [35], [36], [37]. In our work, we share the same motivation as
CL and point out that test-time adaptation also suffers catastrophic
forgetting (i.e., performance degradation on ID test samples), which
makes TTA approaches unstable to deploy. To conquer this, we
propose a simple yet effective solution to maintain the model
performance on ID test samples (by only using test data) and
meanwhile improve the performance on OOD test samples.
Unsupervised Domain Adaptation (UDA). Conventional UDA
tackles distribution shifts by jointly optimizing a source model on
both labeled source data and unlabeled target data, such as devising
a domain discriminator to learn domain-invariant features [38], [39],
[40], [41]. To avoid access to source data, recently CPGA [42]
generates feature prototypes for each category with pseudo-labeling.
SHOT [43] learns a target-specific feature extractor by information
maximization for representations alignment. Nevertheless, such

methods optimize offline via multiple epochs and losses. In contrast,
our method adapts in an online manner and selectively performs
once backward propagation for one given target sample, which is
more efficient during inference.
Uncertainty Calibration. A calibrated model refers to whose
predicting confidence reflects the true likelihood of correctness.
Post-training processing methods [44], [45], [46] re-calibrate a
trained model by leveraging a labeled dataset within the target
domain to estimate calibration error. In contrast, regularization-
based methods [47], [48], [49], [50] introduce auxiliary objectives
to improve calibration at the training phase. Recently, SB-ECE [51]
proposes a differentiable estimation of calibration error as regular-
ization to be jointly minimized. ESD [52] further reformulates the
calibration objective in a class-wise manner to enhance calibration
performance. Nevertheless, these methods necessitate labeled data
from the source or target domain, which limits their applicability.
Unlike these methods, we seek to improve calibration with only
access to unlabeled test data in an online manner in TTA context.

3 PROBLEM FORMULATION

Without loss of generality, let P (x) be the distribution of training
data {xi}Ni=1 (namely xi → P (x)) and f!o(x) be a base model

trained on labeled training data {(xi, yi)}Ni=1, where !o denotes
the model parameters. Due to the training process, the model
f!o(x) tends to fit (or overfit) the training data. During the
inference state, the model shall perform well for the in-distribution
test data, namely x → P (x). However, in practice, due to possible
distribution shifts between training and test data, we may encounter
many out-of-distribution test samples, namely x → Q (x), where
Q (x) ↑= P (x). In this case, the prediction would be very
unreliable and the performance is also very poor.

Test-time adaptation (TTA) [12], [14] aims at boosting the out-
of-distribution prediction performance by doing model adaptation
on test data only. Specifically, given a set of test samples {xj}Mj=1,
where xj → Q (x) and Q (x) ↑= P (x), one needs to adapt f!(x)
to improve the prediction performance on test data in any cases. To
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achieve this, existing methods often seek to update the model by
minimizing some unsupervised objective defined on test samples:

min
!̃

L(x;!), x → Q (x) , (1)

where !̃ ↓ ! denotes the free model parameters that should be
updated. In general, the test-time learning objective L(·) can be
formulated as an entropy minimization problem [12] or prediction
consistency maximization over data augmentations [14], etc..

For existing TTA methods like TTT [11] and MEMO [14]),
during the test-time adaptation, we shall need to compute one round
or even multiple rounds of backward computation for each sample,
which is very time-consuming and also not favorable for latency-
sensitive applications. Moreover, most methods assume that all the
test samples are drawn from out-of-distribution (OOD). However,
in practice, the test samples may come from both in-distribution
(ID) and OOD. Simply optimizing the model on OOD test samples
may lead to severe performance degradation on ID test samples.
We empirically validate the existence of this issue in Figure 3,
where the updated model has a consistently lower accuracy on ID
test samples than the original model.

Moreover, existing entropy-based test-time adaptation methods
like Tent [12] and SAR [18] consistently encourage the model
to produce one-hot highly confident predictions. However, in
practice, input test samples can be naturally complex and severely
corrupted [9], resulting in irreducible data uncertainty. Ideally,
these samples should be predicted with relatively low confidence to
reflect their ambiguity. Nevertheless, the data uncertainty is often
overlooked by methods based on entropy minimization, causing
the adapted model to produce highly confident predictions (called
overconfidence), even when predictions should remain uncertain.
Such misleading predictions raise potential safety concerns for
real-world application scenarios. We empirically demonstrate the
issue of overconfidence in Figure 11(a) and Table 2.

4 UNCERTAINTY-CALIBRATED EFFICIENT ANTI-

FORGETTING TEST-TIME ADAPTATION

In this section, we first propose an Efficient Anti-forgetting Test-

time Adaptation (EATA) method, which aims to improve the
efficiency of test-time adaptation (TTA) and tackle the catastrophic
forgetting issue brought by existing TTA strategies simultaneously.
EATA consists of two strategies. 1) Sample-efficient entropy
minimization (c.f. Section 4.1) aims to conduct efficient adaptation
relying on an active sample selection strategy. Here, the sample
selection process is to choose only active samples for backward
propagation and therefore improve the overall TTA efficiency (i.e.,
less gradient backward propagation). To this end, we devise an
active sample selection score, denoted by S(x), to detect those
reliable and non-redundant test samples from the test set for TTA.
2) Anti-forgetting weight regularization (c.f. Section 4.2) seeks to
alleviate knowledge forgetting by enforcing that the parameters,
important for the ID domain, do not change too much in TTA.
In this way, the catastrophic forgetting issue can be significantly
alleviated. We illustrate EATA in Figure A in Supplementary.

To further address the overconfidence issue, we propose an
Efficient Anti-forgetting Test-time Adaptation with Calibration

(EATA-C) method. As shown in Figure 1, we introduce a new
consistency-based test-time learning objective for model uncer-
tainty reduction (c.f. Section 4.3), follow up a min-max entropy
regularizer to re-calibrate the prediction uncertainty according to
the inherent data uncertainty (c.f. Section 4.4).

4.1 Sample Efficient Entropy Minimization

For efficient test-time adaptation, we propose an active sample
identification strategy to select samples for backward propagation.
Specifically, we design an active sample selection score for each
sample, denoted by S(x), based on two criteria: 1) samples should
be reliable for test-time adaptation, and 2) the samples involved
in optimization should be non-redundant. By setting S(x)=0 for
non-active samples, namely the unreliable and redundant samples,
we can reduce unnecessary backward computation during test-time
adaptation, thereby improving the prediction efficiency.

Relying on the sample score S(x), following [12], [14], we
use entropy loss for model adaptations. Then, the sample-efficient
entropy minimization is to minimize the following objective:

min
!̃

S(x)E(x;!)= ↔S(x)
∑

y→C
f!(y|x)logf!(y|x), (2)

where C is the model output space. Here, the entropy loss E(·) is
calculated over a batch of samples each time (similar to Tent [12])
to avoid a trivial solution, i.e., assigning all probability to the most
probable class. For efficient adaptation, we update !̃↓! with the
affine parameters of all normalization layers.

Reliable Sample Identification. Our intuition is that different
test samples produce various effects in adaptation. To verify
this, we conduct a preliminary study, where we select different
proportions of samples (the samples are pre-sorted according to
their entropy values E(x;!)) for adaptation, and the resulting
model is evaluated on all test samples. From Figure 2, we find that:
1) adaptation on low-entropy samples makes more contribution
than high-entropy ones, and 2) adaptation on test samples with
very high entropy may hurt performance. The possible reason is
that predictions of high-entropy samples are uncertain, so their
gradients produced by entropy loss may be biased and unreliable.
Following this, we name these low-entropy samples as reliable
samples. Based on the above observation, we propose an entropy-
based weighting scheme to identify reliable samples and emphasize
their contributions during adaptation. Formally, the entropy-based
weight is given by:

Sent(x) =
1

exp [E(x;!)↔ E0]
· I{E(x;!)<E0}(x), (3)

where I{·}(·) is an indicator function, E(x;!) is the predicted
entropy regarding sample x, and E0 is a pre-defined threshold.
The above weighting function excludes high-entropy samples from
adaptation and assigns higher weights to test samples with lower
prediction uncertainties, allowing them to contribute more to model
updates. Note that evaluating Sent(x) does not involve any gradient
back-propagation.

Non-redundant Sample Identification. Although Eqn. (3)
helps to exclude partial unreliable samples, the remaining test
samples may still have redundancy. For example, given two
test samples that are mutually similar and both have a lower
prediction entropy than E0, we still need to perform gradient back-
propagation for each of them according to Eqn. (3). However, this
is unnecessary as these two samples produce similar gradients for
model adaptation.

To further improve efficiency, we propose to exploit the
samples that can produce different gradients for model adaptation.
Recall that the entropy loss only relies on final model outputs
(i.e., classification logits), we further filter samples by ensuring
the remaining samples have diverse model outputs. To this end,
one straightforward method is to save the model outputs of all
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Fig. 2. Effect of different test samples in test-time entropy minimiza-
tion [12]. We adapt a model on partial samples (top p% samples with the
highest or lowest entropy values), and then evaluate the adapted model
on all test samples. Results are obtained on ImageNet-C (Gaussian
noise, level 3) and ResNet-50 (base accuracy is 27.6%). Introducing
more samples with high entropy values into adaptation will hurt the
adaptation performance.

previously seen samples, and then compute the similarity between
the outputs of incoming test samples and all saved model outputs
for filtering. However, this method is computationally expensive at
test time and memory-consuming with the increase of test samples.

To address this, we exploit an exponential moving average
technique to track the average model outputs of all seen test
samples used for model adaptation. To be specific, given a set
of model outputs of test samples, the moving average vector is
updated recursively:

mt =

{
ȳ1, if t = 1
ωȳt + (1↔ ω)mt↑1, if t > 1

, (4)

where ȳt = 1
n

∑n
k=1 ŷ

t
k is the average model prediction of a mini-

batch of n test samples at the iteration t, and ω ↗ [0, 1]. Following
that, given a new test sample x received at iteration t > 1, we
compute the cosine similarity between its prediction f!(x) and
the moving average mt↑1 (i.e., cos(f!(x),mt↑1)), which is then
used to determine the diversity-based weight:

Sdiv (x) = I{cos(f!(x),mt→1)<ω}(x), (5)

where ε is a pre-defined threshold for cosine similarities. The
overall sample-adaptive weight is then given by:

S (x) = Sent (x) · Sdiv (x) , (6)

which combines both entropy-based (as in Eqn. 3) and diversity-
based terms (as in Eqn. 5). Since we only perform gradient
back-propagation for test samples with S(x) > 0, the algorithm
efficiency is further improved.

Remark. Given M test samples Dtest = {xj}Mj=1, the
total number of reduced backward computations is given by
Ex↓Dtest [I{S(x)=0}(x)], which is jointly determined by test data
Dtest, entropy threshold E0, and cosine similarity threshold ε.

4.2 Anti-Forgetting with Fisher Regularization

In this section, we propose a new weighted Fisher regularizer
(called anti-forgetting regularizer) to alleviate the catastrophic
forgetting issue caused by test-time adaptation, i.e., the performance
of a test-time adapted model may significantly degrade on in-
distribution (ID) test samples. We achieve this through weight

regularization, which only affects the loss function and does not
incur any additional computational overhead for model adaptation.
To be specific, we apply an importance-aware regularizer R
to prevent model parameters, important for the in-distribution
domain, from changing too much during the test-time adaptation
process [21]:

R(!̃, !̃o) =
∑

εi→!̃

ϑ(ϖi)(ϖi ↔ ϖoi )
2, (7)

where !̃ are parameters used for model update and !̃o are the
corresponding parameters of the original model. ϑ(ϖi) denotes
the importance of ϖi and we measure it via the diagonal Fisher
information matrix as in elastic weight consolidation [21]. Here,
the calculation of Fisher information ϑ(ϖi) is non-trivial since we
are inaccessible to any labeled training data. For the convenience
of presentation, we leave the details of calculating ϑ(ϖi) in the
next subsection.

After introducing the anti-forgetting regularizer, the final
optimization formula for EATA is formulated as:

min
!̃

S(x)E(x;!) + ϱR(!̃, !̃o), (8)

where ϱ is a trade-off parameter, S(x) and E(x;!) are defined
in Eqn. (2).

Measurement of Weight Importance ϑ(ϖi). The calculation
of Fisher information typically involves a set of labeled ID training
samples. However, in our problem setting, we are inaccessible
to training data and the test samples are only unlabeled, which
makes it non-trivial to measure the weight importance. To conquer
this, we first collect a small set of unlabeled ID test samples
{xq}Qq=1, and then use the original trained model f!(·) to predict
all these samples for obtaining the corresponding hard pseudo-
label ŷq . Following that, we construct a pseudo-labeled ID test
set DF = {xq, ŷq}Qq=1, based on which we calculate the fisher
importance of model weights by:

ϑ(ϖi) =
1

Q

∑

xq→DF

( ς

ςϖoi
LCE(f!o(xq), ŷq)

)2
, (9)

where LCE is the cross-entropy loss. Here, we only need to
calculate ϑ(ϖi) once before performing test-time adaptation. Once
calculated, we keep ϑ(ϖi) fixed and apply it to any types of
distribution shifts. Moreover, the unlabeled ID test samples are
collected based on out-of-distribution detection techniques [53],
[54], which are easy to implement. Note that there is no need to
collect too many ID test samples for calculating ϑ(ϖi), e.g., 500
samples are enough for the ImageNet-C dataset. More empirical
studies regarding this can be found in Figure 6.

4.3 Consistency-Based Uncertainty Minimization

As mentioned in Section 4.1, EATA conducts model adaptation
by prediction entropy minimization. This strategy aims to reduce
uncertainty in predictions and learn decision boundaries in low-
density regions of the test samples [55], [56]. However, a persistent
limitation of entropy minimization is its tendency to yield overly
certain predictions, where the model is forced to make one-
hot confident predictions even for ambiguous input data with
irreducible data uncertainty. Thus, EATA may still result in
overconfident predictions that do not accurately reflect the inherent
data uncertainty. To address this, we further propose EATA with
Calibration (EATA-C), shall be depicted in Sections 4.3 and 4.4.
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Algorithm 1 The pipeline of proposed EATA and EATA-C.
Input: Test samples Dtest={xj}Mj=1, the trained model f!(·),

ID samples DF={xq}Qq=1, batch size B.
1: for a batch X={xb}Bb=1 in Dtest do

2: Calculate predictions ŷ for all x ↗ X via f!(·).
3: For EATA:
4: Calculate sample selection score S(x) via Eqn. (6).
5: Update model (!̃ ↓ !) with Eqn. (8).
6: For EATA-C:
7: Select reliable and distinct samples Xs via Eqn. (15).
8: Sample f!sub(·) from f!(·) via stochastic depth [60].
9: Calculate predictions ŷsub for x ↗ Xs via f!sub(·).

10: Compute consistency loss Lc(x) based on Eqn. (10)
11: Calibrate confidence with entropy loss via Eqn. (12)
12: Update model (!̃ ↓ !) with Eqn. (14).
13: end for

Output: The predictions {ŷ}Mj=1 for all x ↗ Dtest.

In EATA-C, we first propose a consistency-based loss to
quantify and optimize the model uncertainty. Our method is inspired
by MC Dropout [57], which has shown promising performance
in estimating the model uncertainty through the divergence of
multiple dropout-enabled predictions. In our context, considering
adaptation efficiency, we define the model uncertainty as the KL
divergence [58] between the full network prediction and randomly
sampled sub-network prediction. Here, we use only two predictions
and the former is indispensable since we select it as the final
prediction. During TTA, we minimize this divergence to promote
consistent predictions for model updates, rather than greedily
increasing confidence which can result in overconfident outputs.

Consistency Loss. Formally, let ŷ = f!(x) be the prediction
of the full network w.r.t. sample x, and ŷsub = f!sub(x) be that
of the sub-network. The consistency loss is defined as follows:

Lc(x) = DKL(ŷsub, ŷfuse), (10)
ŷfuse = (ŷ + (1↔ p) · ŷsub)/(2↔ p), (11)

where DKL(·||·) denotes Kullback-Leibler divergence [58] and
p is a constant for smoothing. Here, we calculate the divergence
between ŷsub and ŷfuse (rather than ŷ), since encouraging the
sub-network to achieve the same performance as the full one is
relatively hard. Thus, inspired by label smoothing [59], we softly
fuse ŷ and ŷsub in Eqn. (11) for divergence optimization. Note
that, during optimization, we conduct a unidirectional alignment
from the sub-network to the full network, as the full network
typically exhibits stronger generalization capabilities. To this end,
we detach the gradient from ŷ and concentrate the optimization
solely on ŷsub. This strategy is designed to facilitate knowledge
transfer from the full network to its sub-network, thereby enhancing
the sub-network’s performance while reducing the full networks’
model uncertainty to adapt the network to the test domain.

Remark on Efficiency. Although consistency loss requires two
forward passes from both the full network and the sub-network
for each sample, the full network’s forward pass is gradient-free
without back-propagation and the sub-network’s forward/backward
pass is less computationally intensive. Moreover, we only perform
sub-network’s forward/backward passes on the selected reliable
and non-redundant samples as outlined in Algorithm 1. As a result,
the use of consistency loss remains efficient as shown in Table 7.

4.4 Calibrated Min-Max Entropy Regularization

In this section, we re-calibrate the model’s prediction uncertainty
in a manner that is sensitive to individual samples. This process in-
volves categorizing samples into two distinct groups—‘certain’ and
‘uncertain’—based on the aforementioned prediction consistency.
This design is inspired by margin-based learning approaches [61],
[62] which indicated that samples near decision boundaries are
inherently more uncertain and have been well justified with
theoretical guarantees. Specifically, we achieve categorization by
comparing the predicted labels between the full network and a sub-
network. Samples that exhibit mismatched predictions are deemed
‘uncertain’, suggesting their proximity to decision boundaries and
high intrinsic data uncertainty. Note that unlike the consistency
loss that measures model uncertainty, in which samples across
the data space may yield low consistency loss, data uncertainty is
reflected more prominently through prediction disagreements near
the decision boundary (see Figure B for illustration). For identified
uncertain samples, we aim to lower their predictive confidence
by maximizing the prediction entropy, effectively acknowledging
the model’s lack of confidence in these cases. Conversely, for
samples where predictions are consistent, labeled as ‘certain’, we
conduct the opposite strategy, i.e., boosting prediction confidence
through entropy minimization. Formally, this min-max entropy
regularization optimization problem is defined by:

min
!̃sub

C(x)E(x;!sub), (12)

C(x) =

{
1, if argmax(ŷ) = argmax(ŷsub),
↔1, if argmax(ŷ) ↑= argmax(ŷsub),

(13)

where ŷ and ŷsub denote the prediction of the full and sub-network
respectively, !sub denotes the parameters of the sub-network and
!̃sub ↘ !sub denotes parameters involved in model adaptation.
Note that we only update the affine parameters of the sub-network
considering efficiency as mentioned in Section 4.3.

Overall Objective. The methods proposed in Sections 4.3 and
4.4 are devised to address the overconfident issue in TTA, but still
suffer from catastrophic forgetting when important model weights
for the in-distribution domain are significantly modified during
adaptation. Therefore, we jointly optimize the model with the anti-
forgetting regularizer and further reduce the required backward
computations with the active sample selection criterion in EATA.
Then, the overall objective of EATA-C can be formulated as:

min
!̃

Sc(x)
(
Lc(x) + ωC(x)E(x;!sub)

)
+ ϱR(!̃, !̃o). (14)

where ω and ϱ are balance factors, R(!̃, !̃o) is the fisher
regularizer defined in Eqn. (7), and Sc(x) is the joint indicator
function in Eqn. (3) and Eqn. (5) to select reliable and non-
redundant samples. To be specific, Sc(x) is defined by:

Sc(x) = Sdiv(x) · I{E(x;!)<E0}(x). (15)

We summarize the overall pipeline of our proposed EATA-C and
EATA in Algorithm 1.

5 EXPERIMENTS

Datasets and Models. We conduct experiments on three bench-
mark datasets for OOD generalization: ImageNet-C [9] (contains
corrupted images in 15 types of 4 main categories and each type
has 5 severity levels) and ImageNet-R [66] for image classification;
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TABLE 2
Comparison with state-of-the-art methods on ImageNet-C with the highest severity level 5 regarding Corruption Accuracy(%, →) and Expected

Calibration Error(%,↑). “BN” and “LN” denote batch and layer normalization, respectively. The bold number indicates the best result and the
underlined number indicates the second best result. All results are evaluated under the lifelong adaptation scenario except for Tent [12] and

MEMO [14], which suffer severely from error accumulation. We use * and † to denote episodic and single-domain adaptation, respectively.

Noise Blur Weather Digital Average
Model Method Metric Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. #Forwards #Backards

R-50 (BN)

Source Acc. 1.8 3.0 1.7 18.2 10.1 13.4 20.8 14.0 22.1 21.9 58.7 5.3 17.6 22.1 37.5 17.88 50,000 0ECE 16.6 16.1 15.9 1.8 10.7 10.7 14.7 25.3 12.9 16.7 2.3 6.7 22.9 10.5 6.0 12.64

BN Adapt Acc. 15.8 16.7 15.3 18.7 19.3 29.8 41.7 35.8 35.0 50.5 65.9 18.1 49.3 51.7 42.0 33.70 50,000 0ECE 1.1 0.8 1.0 3.0 1.3 0.8 3.4 1.1 1.0 5.4 1.4 7.6 4.3 3.8 4.8 2.72

Tent† Acc. 28.0 30.1 28.1 29.9 29.5 42.2 49.7 46.2 41.5 57.7 67.1 30.0 55.7 58.3 52.5 43.11 50,000 50,000ECE 11.7 11.2 11.1 12.6 12.3 7.7 5.4 6.5 8.8 3.4 2.9 21.9 3.5 3.7 4.0 8.46

MEMO* Acc. 6.8 8.5 7.5 20.5 13.4 19.8 25.8 22.1 27.7 27.6 60.9 11.3 24.4 32.2 37.9 23.09 50,000↓65 50,000↓64ECE 24.1 24.2 22.9 5.3 19.3 14.8 23.4 30.4 18.7 24.6 7.2 14.9 29.4 19.3 13.6 19.47

CoTTA Acc. 19.9 31.8 35.3 30.4 34.4 40.2 43.2 39.3 38.6 47.7 51.8 36.0 43.5 46.7 43.1 38.80 152,315 50,000ECE 3.6 17.4 21.5 27.8 30.4 31.2 31.6 33.2 34.2 32.5 33.1 36.0 34.2 36.1 35.9 29.25

SAR Acc. 29.6 38.4 37.8 31.5 32.8 41.4 48.6 42.9 40.2 53.3 63.7 37.7 53.0 56.3 52.3 43.96 85,964 68,145ECE 3.7 7.4 9.1 14.4 15.1 12.6 9.6 11.7 13.3 8.4 7.0 16.8 8.5 8.4 8.5 10.29

ROID Acc. 36.7 38.6 35.9 29.1 28.8 40.6 46.5 49.5 41.8 55.6 65.3 43.5 53.6 56.1 52.8 44.95 80,380 80,380ECE 36.6 38.5 35.8 29.0 28.7 40.5 46.4 49.4 41.7 55.5 65.2 43.4 53.5 56.0 52.7 44.85

RDump Acc. 35.6 34.4 36.1 32.7 34.6 45.5 51.6 50.3 44.1 59.9 66.8 46.3 56.8 59.1 54.7 47.23 50,000 26,375ECE 10.5 11.4 12.6 13.9 14.4 9.4 8.1 8.1 9.4 6.3 5.5 11.8 6.1 7.0 6.3 9.40

TEA Acc. 18.5 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 1.36 50,000↓23 50,000↓22ECE 7.9 5.4 2.4 2.0 1.8 1.9 3.8 19.5 67.6 76.4 86.2 91.0 90.4 91.3 91.3 42.60

Acc. 35.6 38.7 37.5 35.9 36.1 47.6 53.1 50.6 45.6 59.5 67.1 45.2 57.6 59.8 55.4 48.36EATA (Ours) ECE 10.5 13.4 14.7 18.5 18.5 14.7 12.8 14.1 16.1 11.6 10.4 18.6 13.3 13.1 13.9 14.28 50,000 29,721

Acc. 37.2 40.9 39.9 36.6 37.1 48.5 52.7 51.9 47.2 60.4 67.0 49.0 57.6 60.1 56.1 49.48EATA-C (Ours) ECE 7.1 6.7 7.2 10.1 9.5 5.9 4.9 4.8 5.8 3.2 3.2 6.0 4.0 3.9 3.9 5.74 83,312 33,312

ViT (LN)

Source Acc. 12.9 17.6 11.7 34.4 27.7 43.7 36.2 43.4 45.4 52.8 73.3 45.5 37.9 54.7 60.2 39.84 50,000 0ECE 14.2 11.3 15.2 2.2 8.2 6.0 10.7 7.5 8.3 5.0 2.1 2.3 12.2 4.1 2.9 7.48

Tent† Acc. 33.4 42.1 41.4 48.8 45.2 54.9 48.2 55.6 55.1 64.4 75.2 62.5 51.6 65.5 65.0 53.92 50,000 50,000ECE 24.1 10.1 11.7 8.6 10.4 7.5 12.4 8.0 8.0 4.8 2.4 5.2 10.0 4.3 4.1 8.78

MEMO* Acc. 32.2 35.1 32.6 37.5 28.5 43.3 40.1 45.2 47.0 53.9 73.3 53.3 39.6 59.5 62.8 45.60 50,000↓65 50,000↓64ECE 33.0 32.5 33.2 36.7 45.7 41.0 47.2 39.8 38.8 33.7 20.0 26.7 48.5 30.4 27.2 35.63

CoTTA Acc. 45.6 58.8 58.4 40.1 50.9 50.4 44.4 46.1 51.4 52.2 57.7 36.5 53.9 55.8 55.4 50.51 50,000↓3 50,000ECE 9.0 15.8 21.0 29.3 28.3 29.1 34.5 29.8 29.6 30.0 29.2 36.3 29.0 31.2 31.8 27.59

SAR Acc. 43.1 50.8 52.9 50.4 51.0 57.5 53.2 58.6 61.2 66.0 76.1 61.2 54.7 67.8 67.7 58.15 91,605 82,277ECE 8.0 8.4 9.5 9.1 11.4 9.6 13.0 9.9 9.6 7.8 4.5 10.0 13.8 7.5 7.5 9.30

ROID Acc. 48.8 49.5 49.0 54.1 54.2 58.8 55.7 62.7 61.3 69.7 77.0 65.5 64.1 69.6 68.3 60.56 80,739 80,739ECE 48.7 49.4 48.9 54.0 54.1 58.7 55.6 62.6 61.2 69.6 76.9 65.4 64.0 69.5 68.2 60.46

RDump Acc. 50.5 48.4 51.8 54.0 55.3 59.4 55.9 63.3 60.7 70.8 76.8 66.8 60.9 69.5 68.4 60.84 50,000 32,050ECE 10.6 9.7 10.5 8.9 9.4 7.9 10.0 6.9 7.4 5.4 3.2 6.7 7.6 5.1 5.0 7.62

TEA Acc. 46.9 48.0 48.1 46.7 47.0 53.9 53.5 57.4 56.0 62.2 71.7 55.4 57.1 63.1 61.7 55.24 50,000↓23 50,000↓22ECE 10.6 13.7 13.7 14.5 14.4 11.3 11.6 9.4 10.2 7.8 3.9 10.5 9.8 7.3 7.4 10.40

Acc. 50.5 55.6 56.0 54.9 56.3 61.1 59.8 64.3 64.0 70.1 77.4 65.5 63.1 70.4 69.5 62.57EATA (Ours) ECE 10.6 13.9 15.7 16.4 17.3 15.9 17.5 14.8 15.7 12.8 9.0 15.4 17.5 13.3 13.9 14.63 50,000 36,688

Acc. 56.8 60.2 59.8 58.0 60.9 65.2 65.5 69.7 67.8 74.0 78.9 66.7 70.3 74.1 71.8 66.65EATA-C (Ours) ECE 5.2 5.1 5.9 7.1 6.2 5.6 5.9 5.0 5.0 4.1 3.3 5.4 4.7 4.2 4.7 5.14
83,184 33,184

TABLE 3
Comparison on ImageNet-R. Results are evaluated in the single-domain

adaptation scenario. We use * to denote episodic adaptation.

Model Acc. (%) ECE (%) #Forwards #Backwards

ResNet-50(BN) 38.0 17.7 30,000 0
• BN [29] 40.4(+2.4) 13.4(→4.3) 30,000 0
• Tent [12] 42.3(+4.3) 17.8(+0.1) 30,000 30,000
• MEMO* [14] 41.9(+3.9) 26.9(+9.2) 30,000↓65 30,000↓64
• CoTTA [63] 42.4(+4.4) 15.8(→1.9) 90,000 30,000
• SAR [18] 42.7(+4.7) 14.6(→3.1) 47,755 32,877
• ROID [64] 48.6(+10.5) 48.1(+30.4) 48,303 48,303
• TEA [65] 42.8(+4.8) 14.2(→3.5) 30,000↓23 30,000↓22
• EATA (Ours) 44.9(+6.9) 16.7(→1.0) 30,000 5,417
• EATA-C (Ours) 47.1(+9.1) 13.3(→4.4) 35,122 5,122

ViT(LN) 52.5 5.0 30,000 0
• Tent [12] 54.2(+1.7) 7.4(+2.4) 30,000 30,000
• MEMO* [14] 57.5(+5.0) 32.1(+27.1) 30,000↓65 30,000↓64
• CoTTA [63] 56.4(+3.9) 7.4(+2.4) 90,000 30,000
• SAR [18] 55.0(+2.5) 5.2(+0.2) 47,119 33,844
• ROID [64] 62.2(+9.7) 61.7(+56.7) 49,795 49,795
• TEA [65] 60.1(+7.6) 7.4(+2.4) 30,000↓23 30,000↓22
• EATA (Ours) 58.2(+5.7) 5.8(+0.8) 30,000 6,053
• EATA-C (Ours) 64.2(+11.7) 3.9(→1.1) 36,395 6,395

and ACDC [67] for semantic segmentation. We use ResNet-50
(R-50) [1] and ViT-Base (ViT) [25] for ImageNet experiments, and
Segformer-B5 [68] for ACDC [67] experiments. The models are

trained on ImageNet or CityScapes [69] training set with stochastic
depth regularization [60] and tested on clean or OOD test sets.

Compared Methods. We compare with the following state-of-
the-art methods. BN adaptation [29] updates batch normalization
statistics on test samples. Tent [12] minimizes the entropy of test
samples during testing. MEMO [14] maximizes the prediction
consistency of different augmented copies regarding a given test
sample. SAR [18] selects reliable samples for test time sharpness-
aware entropy minimization. CoTTA [63] and DAT [70] minimize
the cross entropy between the student network and its mean teacher
during testing. RDump [71] periodically resets model parameters
based on our EATA. TEA [65] employs energy-based contrastive
learning with negative sample generation. ROID [64] minimizes
the diversity-weighted soft likelihood ratio loss. We denote EATA
without weight regularization in Eqn. (7) as efficient test-time
adaptation (ETA). More ablative methods can be found in Table 6.

Adaptation Scenarios. We conduct experiments under three
adaptation scenarios: 1) Episodic, the model parameters will be
reset immediately after each optimization step of a test sample
or batch; 2) Single-domain, the model is online adapted through
the entire evaluation of one given test dataset (e.g., gaussian noise
level 5 of ImageNet-C). Once the adaptation on this dataset is
finished, the model parameters will be reset; 3) Lifelong, the model
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is online adapted and the parameters will never be reset (as shown
in Figure 3 (Right)), which is more challenging but practical.
Evaluation Metrics. 1) Clean accuracy/error (%) on original in-
distribution (ID) test samples, e.g., the original test images of
ImageNet. Note that we measure the clean accuracy of all methods
via (re)adaptation; 2) Out-of-distribution (OOD) accuracy/error
(%) on OOD test samples, e.g., the corruption accuracy on
ImageNet-C; 3) Expected Calibration Error (ECE) [72] on OOD
test samples, which measures the average discrepancies between
model’s confidence and accuracy within multiple confidence
intervals; 4) The number of forward and backward passes during the
entire TTA process. Note that the fewer #forwards and #backwards
indicate less computation, leading to higher efficiency.
Implementation Details. For test time adaptation, we use SGD as
the update rule, with a momentum of 0.9 and a batch size of 64. In
EATA and ETA, the learning rate is set to 0.00025/0.001 for ResNet-
50/ViT-Base on ImageNet, and 7.5≃10↑5 on ACDC, respectively
(following Tent, SAR and CoTTA). In EATA-C, the learning rate
is set to 0.005/0.1 for ResNet-50/ViT-Base on ImageNet, and
0.0005 on ACDC, respectively. The sub-network is obtained via
stochastic depth regularization [60] with a drop ratio of 0.2/0.6 for
ImageNet/ACDC. For both EATA and EATA-C, we use 2,000/20
samples for ImageNet/ACDC to calculate ϑ(ϖi) in Eqn. (9).The
effect and sensitivity of each hyperparameter is investigated in
Section 5.3. More details are put in Supplementary.

5.1 Comparisons w.r.t. OOD Performance, Efficiency

and Calibration Error

Results on ImageNet-C. From Table 2, our EATA and EATA-
C consistently surpass existing approaches regarding adaptation
accuracy, e.g., the average accuracy of 48.4% (EATA) vs. 45.0%
(ROID) on ResNet-50. Importantly, EATA yields a remarkable
performance gain over its counterpart Tent, e.g., 33.4% ⇐ 50.5%
on Gaussian Noise with ViT-Base, suggesting the significance of
removing samples with unreliable gradients and tackling samples
differently in the TTA process. Our enhanced method, EATA-
C, further boosts adaptation accuracy by a large margin, which
consistently outperforms TEA and ROID in all 15 corruption types
over both ResNet-50 and ViT-Base, suggesting our effectiveness.
Note that besides achieving strong OOD performance, EATA also
alleviates the forgetting on ID samples (see Figure 3), showing the
effectiveness of our anti-forgetting regularization without limiting
the learning ability during adaptation (see also Table 6 for ablation).

In terms of computational efficiency, EATA requires only
29,721 backward passes on ResNet-50, which is much fewer
than methods that require extensive data augmentations (i.e., TEA
at 50,000≃22) or multiple optimization iterations (e.g., SAR at
68,145 on ResNet-50). Compared with Tent (e.g., 50,000 backward
passes), EATA saves computation by excluding samples with
high prediction entropy and redundant samples out of test-time
optimization, resulting in higher efficiency. While our EATA-C
uses additional forward passes, its forward passes with the
full network are gradient-free, and the lightweight sub-network
forward/backward passes are conducted only on the selected
samples, maintaining overall computational efficiency comparable
to EATA (see Table 7 for detailed results and discussions on
wall-clock time and memory usage). Although optimization-free
methods (such as BN adaptation) do not need backward updates,
their applicability scope and OOD performances are limited.

Regarding calibration, existing methods consistently exhibit
substantial calibration error (e.g., ROID and CoTTA are 60.46%

and 27.59% on ECE with ViT-Base), suggesting miscalibration
as a prevalent issue in the unsupervised test-time adaptation. By
filtering unreliable samples to reduce noisy learning signals, EATA
improves calibration over Tent (e.g., 11.7% ⇐ 10.5% on Gaussian
Noise with ResNet-50), though miscalibration is yet significant. By
further decreasing reducible model uncertainty and reflecting data
uncertainty in model predictions, our enhanced method, EATA-C,
reduces the ECE of EATA by relatively 59.8% on ResNet-50 and
64.9% on ViT-Base, demonstrating the strong calibration effect of
EATA-C across diverse datasets and architectures. In summary,
while EATA-C improves performance and efficiency over the
state of the art, our EATA-C further achieves high accuracy, well-
calibrated prediction, and efficient computation simultaneously,
establishing a new benchmark for test-time adaptation.
Results on ImageNet-R. From Table 3, EATA consistently
achieves a favorable balance between performance and efficiency,
significantly improving accuracy on both ResNet-50 and ViT-Base
while requiring much fewer backpropagation steps. For instance,
EATA improves accuracy from 42.8% (TEA) to 44.9% on ResNet-
50, while reducing the backpropagation steps from 30,000≃22 to
5,417. EATA-C further improves accuracy substantially (e.g., by
6.0% over EATA on ViT-Base), while maintaining computational
efficiency comparable to EATA. Importantly, EATA-C is the only
method that reduces calibration error on both ResNet-50 and
ViT-Base and uniquely lowers ECE on ViT-Base, suggesting the
effectiveness of our calibration-driven objective in TTA.
Results on CityScapes-to-ACDC. Following [63], we evaluate our
method on the semantic segmentation task in a lifelong adaptation
scenario. From Table 4, while DAT initially achieves higher mIOU,
it tends to overfit, leading to significant performance degradation
in subsequent adaptations. In contrast, our EATA maintains a
more stable performance compared to DAT and Tent, by filtering
unreliable predictions and preventing drastic changes to important
model parameters. Moreover, by replacing entropy minimization
with our consistency maximization objective for more robust
learning signals, EATA-C achieves state-of-the-art performance,
surpassing EATA by 4.6% and CoTTA by 3.2% in mIoU over
ten adaptation rounds. More critically, our EATA-C showcases
consistent improvement over lifelong adaptation, increasing the
average mIOU on four datasets from 59.8% (first round) to 62.3%
(tenth round), further highlighting our long-term effectiveness.

5.2 Demonstration of Preventing Forgetting

In this section, we investigate the ability of our EATA in preventing
ID forgetting during test-time adaptation. The experiments are
conducted on ImageNet-C with ResNet-50. We measure the anti-
forgetting ability by comparing the model’s clean accuracy (i.e., on
original validation data of ImageNet) before and after adaptation.
To this end, we first perform test-time adaptation on a given OOD
test set, and then evaluate the clean accuracy of the updated model.
Here, we consider two adaptation scenarios: the single-domain
adaptation, and the lifelong adaptation. We report the results of
severity level 5 in Figure 3 and put the results of severity levels 1-4
into Supplementary.

From Figure 3, our EATA consistently outperforms Tent
regarding the OOD corruption accuracy and meanwhile maintains
the clean accuracy on ID data (in both two adaptation scenarios),
demonstrating our effectiveness. It is worth noting that the perfor-
mance degradation in lifelong adaptation scenario is much more
severe (see Figure 3 Right). More critically, in lifelong adaptation,
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TABLE 4
Semantic segmentation results (mIoU in %) on the Cityscapes-to-ACDC lifelong test-time adaptation scenario. The model is continually adapted to
the four adverse conditions for ten rounds without model reset. All results are evaluated based on the Segformer-B5 architecture. Following [63], we

only show the results of the first, fourth, seventh, and last rounds due to page limits. Full results can be found in the supplementary material.

Round 1 4 7 10 All

Condition Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Mean

Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7
BN Stats Adapt 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0(→4.7)
Tent (lifelong) 69.0 40.2 60.0 57.3 66.6 36.6 58.9 54.2 64.6 33.4 55.9 51.6 62.5 30.4 52.6 48.7 52.7(→4.0)
CoTTA 70.9 41.1 62.4 59.7 70.8 40.6 62.6 59.7 70.8 40.5 62.6 59.7 70.8 40.5 62.6 59.7 58.4(+1.7)
DAT 71.7 44.6 63.8 62.2 68.0 42.0 60.9 59.4 66.1 40.6 59.8 57.8 63.8 39.6 58.2 55.4 57.0(+0.3)

EATA 69.1 40.5 59.8 58.1 69.3 41.8 60.1 58.6 68.8 42.5 59.4 57.9 67.9 42.8 57.7 56.3 57.0(+0.3)
EATA-C 71.0 44.3 63.1 61.1 72.0 47.3 64.9 63.8 71.8 48.2 64.2 64.2 72.0 48.7 64.3 64.1 61.6(+4.9)

Fig. 3. Comparison of preventing forgetting on ImageNet-C (severity level 5) with ResNet-50. We record the OOD corruption accuracy on each
corrupted test set and the ID clean accuracy (after OOD adaptation). In Left, the model parameters of both Tent and our EATA are reset before
adapting to a new corruption type. In Right, the model performs lifelong adaptation and the parameters will never be reset, namely Tent (lifelong) and
our EATA (lifelong). The upper bound clean accuracy is estimated with the source model without adaptation on corrupted OOD data, which does not
suffer from forgetting. EATA achieves higher OOD accuracy and meanwhile maintains the ID clean accuracy.

both the clean and corruption accuracy of Tent decreases rapidly
(until degrades to 0%) after adaptation of the first three corruption
types, showing that Tent in lifelong adaptation is not stable enough.
In contrast, during the whole lifelong adaptation process, our EATA
achieves good corruption accuracy and the clean accuracy is also
very close to the clean accuracy of the model without any OOD
adaptation (i.e., original clean accuracy, tested using Tent). These
results demonstrate the superiority of our anti-forgetting Fisher
regularizer in terms of overcoming the forgetting on ID data.

5.3 Ablation Studies

Effect of Components in S(x) (Eqn. 6). Our EATA accelerates
test-time adaptation by excluding two types of samples out of
optimization: 1) samples with high prediction entropy values
(Eqn. 3) and 2) samples that are similar (Eqn. 6). We ablate both of
them in Table 5. Compared with the baseline S(x)=1 (the same
as Tent), introducing Sent(x) in Eqn. (3) achieves better accuracy
and fewer backwards (e.g., 49.6% (37,636) vs. 33.4% (50,000) on
level 5). This verifies our motivation in Figure 2 that some high-
entropy samples may hurt the performance since their gradients
are unreliable. When further removing some redundant samples
that are similar (Eqn. 6), our EATA further reduces the number of
back-propagation (e.g., 37,636⇐28,168 on level 5) and achieves
comparable OOD error (e.g., 50.4% vs. 49.6%), demonstrating the
effectiveness of our sample-efficient optimization strategy.
Effect of Components in EATA-C. Our EATA-C aims to achieve
a favorable balance between accuracy, calibration, and efficiency.
We conduct an ablation study to verify the effectiveness of each
module as in Table 6. The results indicate the following findings:
1) Consistency Loss: Incorporating the consistency loss alone

TABLE 5
Effectiveness of components in sample-adaptive weight S(x) in EATA on

ImageNet-C (Gaussian noise) with ResNet-50.

Method Level 3 Level 5
Acc. (%) #Backwards Acc. (%) #Backwards

Baseline (S(x)=1) 68.8 50,000 33.4 50,000
+Sent(x) (Eqn. 3) 70.7 45,302 49.6 37,636
+S(x) (Eqn. 6) 70.8 36,057 50.4 28,168

substantially enhances the source model’s robustness and reduces
ECE; 2) Entropy Regularization: The min-max entropy regularizer
further calibrates prediction confidence and leads to a slight
improvement in accuracy, e.g., accuracy increases from 48.8%
(Exp 10) to 49.0% (EATA-C), and ECE decreases from 5.1% to
4.6%; 3) Fisher Regularization: This anti-forgetting regularizer
contributes to TTA stability, as in the lifelong TTA of Table 2 and
Figure 3. In single-domain TTA, it also positively affects both ECE
and accuracy, e.g., ECE decreases from 5.4% (ETA-C) to 4.6%
(EATA-C) and accuracy improves from 48.9% to 49.0%; 4) Active
Sample Selection: By filtering out unreliable and redundant test
samples, active sample selection significantly boosts computational
efficiency while maintaining or improving accuracy, e.g., accuracy
increases from 48.5% (Exp 6) to 49.0% (EATA-C) while reducing
the required backward passes by 35%. More discussions on wall-
clock time and memory usage are provided in Table 7. These results
collectively underscore the effectiveness of each component.
Entropy Constant E0 in Eqn. (3). We evaluate our EATA with
different E0, selected from {0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.50, 0.55}≃ ln 103, where 103 is the class number of ImageNet.
From Figure 4, our EATA achieves excellent performance when E0
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Fig. 4. Effect of different entropy margins E0
in Eqn. (3). Results obtained on ImageNet-
C(Gaussian, level 5) with ResNet-50.

Fig. 5. Effect of different similarity threshold
ω in Eqn.( 5). Results obtained on ImageNet-
C(Gaussian, level 5) with ResNet-50.

Fig. 6. Effect of #samples for calculating Fisher
in Eqn. (9). Results obtained on ImageNet-
C(Gaussian, level 5) with ResNet-50.

Fig. 7. Effect of different balancing factor ε
in Eqn. (8). Results obtained on ImageNet-
C(Gaussian, level 5) with ViT-Base.

Fig. 8. Effect of different balancing factor ϑ
in Eqn. (8). Results obtained on ImageNet-
C(Gaussian, level 5) with ViT-Base.

Fig. 9. Effect of different stochastic depth ratios
in EATA-C. Results obtained on ImageNet-
C(Gaussian, level 5) with ViT-Base.

TABLE 6
Effects of components in EATA-C. Results obtained on 15 corruptions of
ImageNet-C (level 5) with ResNet-50 in single-domain TTA scenario, i.e.,
the model parameters are reset before adapting to a new domain.
CL denotes consistency loss. ER denotes min-max entropy regularizer.

FR denotes Fisher regularizer. SS denotes active sample selection.

Experiment CL ER FR SS Average
Acc. ECE #Forwards #Backwards

Source 39.8 7.5 50,000 0
1 ↭ 47.7 4.3 50,000↓2 50,000
2 ↭ 44.0 5.2 50,000↓2 50,000
3 ↭ ↭ 48.6 4.3 50,000↓2 50,000

4 ↭ ↭ 47.5 3.7 50,000↓2 50,000
5 ↭ ↭ 43.4 4.2 50,000↓2 50,000
6 ↭ ↭ ↭ 48.5 3.8 50,000↓2 50,000

7 ↭ ↭ 48.9 5.9 83,583 33,583
8 ↭ ↭ 42.9 4.4 74,705 24,705
9 (ETA-C) ↭ ↭ ↭ 48.9 5.4 82,882 32,882
10 ↭ ↭ ↭ 48.8 5.1 82,952 32,952
11 ↭ ↭ ↭ 42.3 3.8 74,226 24,226
12 (EATA-C) ↭ ↭ ↭ ↭ 49.0 4.6 82,492 32,492

belongs to [0.4, 0.5]. Either a smaller or larger E0 would hamper
the performance. The reasons are mainly as follows. When E0 is
small, EATA removes too many samples during adaptation and thus
is unable to learn enough knowledge from the remaining samples.
When E0 is too large, some high-entropy samples would take
part but contribute unreliable and harmful gradients, resulting in
performance degradation. As larger E0 leads to more backward
passes, we set E0 to 0.4≃ ln 103 for efficiency-performance trade-
off and fix the proportion of 0.4 for all other ImageNet experiments.
Similarity Threshold ε in Eqn. 5. We use ε to select diverse
samples for TTA. From Figure 5, EATA maintains stable accuracy
across a wide range of ε ↗ [0.01, 0.08], showcasing insensitivity,
while a smaller ε removes significantly more samples and improves
computational efficiency. We set ε=0.05 without careful tuning.
More results on efficiency (i.e., time and memory usage) of EATA
and EATA-C with varying ε are provided in Table 7.
Number of Samples for Calculating Fisher in Eqn. (9). As

described in Section 4.2, the calculation of Fisher information
involves a small set of unlabeled ID samples, which can be collected
via existing OOD detection techniques [54]. Here, we investigate
the effect of #samples Q, selected from {200, 300, 500, 700, 1000,
1500, 2000, 3000}. From Figure 6, our EATA achieves stable
performance with Q ⇒ 300, i.e., compared with ETA, the OOD
performance is comparable and the clean accuracy is much higher.
These results show that our EATA does not need to collect too
many ID samples, which are easy to obtain in practice.
Factor ω for Entropy Regularizer in Eqn. 14. We directly set
ω=0.1 to align the magnitudes of consistency loss and entropy
regularization loss for EATA-C without careful tuning. From
Figure 7, increasing ω within [0, 0.1] effectively reduces more ECE
while maintaining stable accuracy, verifying its efficacy. However,
when ω exceeds 0.1, the entropy regularization loss dominates the
adaptation, which leads to a gradual decline in accuracy.
Factor ϱ for Fisher Regularizer in Eqn. 14. From Figure 8,
compared to ETA-C (i.e., setting ϱ=0), introducing the fisher
regularizer consistently achieves better accuracy. Moreover, once
activated, the performance of EATA becomes largely insensitive to
ϱ within the tested range of [20, 140], highlighting its robustness.
Stochastic Depth Ratio for Obtaining Sub-Network. In Eqn. (10),
We generate an extra prediction from the sub-network to measure
model uncertainty, where the sub-network is obtained via stochastic
depth [60] throughout the experiments. We evaluate the effect of
stochastic depth ratio selected from {0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35 ,0.4}. As shown in Figure 9, our EATA-C achieves a
satisfying performance-calibration trade-off when the ratio belongs
to [0.15, 0.25], where the full network consistently outperforms the
sub-network while the sub-network retains sufficient capacity for
learning. We fix the ratio to 0.2 for all other ImageNet experiments.

5.4 More Discussions

Efficiency Analysis of EATA and EATA-C. We evaluate the
efficiency of our methods by including a more comprehensive
comparison of time and memory usage for TTA, as in Table 7. The
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TABLE 7
Efficiency comparison regarding wall-clock time and peak memory

usage on ImageNet-C (Gaussian, severity level 5) with an A100 GPU.

Method ResNet-50 ViT-Base
Acc. (%) Time (s) Mem. (MB) Acc. (%) Time (s) Mem. (MB)

Source 1.8 54.6 771.7 12.9 55.7 816.6
Tent [12] 28.0 99.9 5417.6 33.4 106.1 7433.2
SAR [18] 29.6 149.0 5417.7 43.1 167.3 7433.2
ROID [30] 36.7 190.2 9315.3 48.8 181.6 12321.4
CoTTA [16] 19.9 241.0 12196.7 45.6 229.9 22296.5
TEA [65] 18.5 2266.1 15942.0 46.9 - -
MEMO [14] 6.8 36329.2 8154.3 32.2 39918.8 11061.1

EATA (ω=0.02) 35.2 93.0 2285.2 50.7 85.1 4234.6
EATA-C (ω=0.02) 35.9 95.2 2205.5 55.0 88.8 4014.4

EATA (Ours) 35.6 106.5 3693.0 50.5 108.7 5887.6
EATA-C (Ours) 37.2 122.4 3358.7 56.8 114.9 5786.6

TABLE 8
Reliability of data uncertainty indicator. We report sub-model Acc. (%) on
ImageNet-C(Gaussian, level 5) after adapting to B batches (batch size
64) with ViT-Base. “#Uncertain” are samples with disagreed predictions.
“Indicator Acc.” is the ratio of these samples misclassified by sub-model.

Metric Source EATA-C EATA-C EATA-C EATA-C EATA-C
(B=150) (B=300) (B=450) (B=600) (B=750)

Model Acc. (%) 9.3 47.0 50.2 50.7 51.9 52.0
#Uncertain 26144 15697 14682 14149 13648 13722
Indicator Acc. (%) 97.1 90.0 88.9 89.3 88.6 89.1

results reveal the following: 1) Adaptation Time: EATA and EATA-
C require significantly less adaptation time than most baseline
methods, while maintaining competitive or superior accuracy. For
example, on ViT-Base, EATA-C improves accuracy from 48.8%
(ROID) to 56.8% with a reduction in adaptation time from 181.6
seconds to 114.9 seconds. Moreover, by setting a stricter threshold
ε to filter redundant test samples, EATA and EATA-C can be
further accelerated while maintaining performance. For example,
using ε=0.02, EATA on ViT-Base increases accuracy from 33.4%
(Tent) to 50.7% while reducing adaptation time from 106.1
seconds to 85.1 seconds; 2) Memory Usage: Our methods also
demonstrate efficient memory utilization, where EATA and EATA-
C consume substantially less memory compared to all competing
TTA methods, e.g., on ResNet-50, memory usage decreases from
5417.7MB (SAR) to 2205.5MB (EATA-C, ε=0.02) while accuracy
increases from 29.6% to 35.9%. This memory reduction is achieved
through our active sample selection strategy, which reduces the
number of samples involved in backpropagation. Note that the
current Pytorch implementation does not support instance-wise
gradient computation, thus an ideal implementation should further
speed up both EATA and EATA-C. See more discussions on our
implementation details in Appendix X.
Effectiveness of Data Uncertainty Indicator. We evaluate the
effectiveness of our data uncertainty indicator, i.e., Eqn. (13),
throughout TTA. The results are detailed in Table 8: 1) Consistently
High Indicator Accuracy: Across various adaptation stages, our
indicator continues to reliably identify uncertain samples, on which
the sub-model’s prediction is likely to be incorrect. Specifically, the
indicator maintains around 90% accuracy, suggesting its effective-
ness even in the early stage of adaptation. This reliability allows us
to apply entropy maximization on these uncertain data to improve
calibration without hindering adaptation; 2) Reduced Uncertain
Samples Over Time: The model’s initial poor performance mainly
leads to a higher number of uncertain samples, including inherently
difficult data for discrimination and data the model has yet to learn.
However, model uncertainty quickly explains away during TTA (i.e.,

Fig. 10. Calibration comparison of each confidence interval on ImageNet-
C(Fog, level 5) with ViT-Base. Results are visualized following [44].

TABLE 9
Comparison with Tent [12] w.r.t. corruption accuracy (%) with mixture of

15 corruption types on ImageNet-C with ViT-Base.

Severity Source Tent EATA (ours) EATA-C (ours)

Level=3 63.0 69.8(+6.8) 71.1(+8.1) 72.4(+9.4)
Level=5 39.8 47.0(+7.2) 58.2(+18.4) 60.4(+20.6)

within one-fifth of the data stream), leading to a stabilized number
of uncertain samples that reflects irreducible data uncertainty.
Additional Memory by Fisher Regularizer. Since we only
regularize the affine parameters of normalization layers, EATA
needs very little extra memory. For ResNet-50 on ImageNet-C, the
extra GPU memory at run time is only 9.8 MB, which is much less
than that of Tent with batch size 64 (5,675 MB).
Performance under Mixed-and-Shifted Distributions. We evalu-
ate Tent and our EATA/EATA-C on mixed ImageNet-C (level=3 or
5) that consists of 15 different corruption types/distribution shifts
(totaling 750k images). Results in Table 9 show the stability of
EATA and EATA-C in large-scale and complex TTA scenarios.
Calibration Across Confidence Intervals. EATA-C aims to
achieve a favorable balance among accuracy, calibration, and
efficiency. In EATA-C, we discard high-entropy samples (termed
active sample selection) mainly to improve computational efficiency.
While some high-entropy samples might benefit from further
calibration, they typically yield unreliable pseudo-labels, which
can negatively impact the stability and effectiveness of TTA (see
Table 6). Instead of directly calibrating on these samples, we
show that focusing adaptation and calibration on only low-entropy
samples can also improve the calibration on high-entropy ones, as
in Figure 5.4, while improving TTA efficiency and effectiveness.
Advantage of Consistency Maximization over Tent [12]. We
conduct a comprehensive comparison w.r.t. performance, cali-
bration, and stability between the use of consistency loss, as
defined in Eqn. (10), and Tent [12] to reduce uncertainty during
testing. From Figure 11(a), we have the following observations:
1) Consistency loss consistently demonstrates superior performance
and calibration throughout adaptation. 2) Consistency loss is more
sample-efficient, where adapting with as few as 75 batches can
significantly outperform Tent [12] that adapts with 300 batches.
3) Tent [12] shows rapid degradation in performance and calibration
after convergence. In contrast, consistency loss maintains stable
performance and calibration after convergence and continuously
exhibits strong generalization throughout TTA.

We further evaluate the stability of consistency loss and
Tent [12] across various combinations of learning rates and
adaptation steps in Figures 11(b) and 11(c) following [73]. The
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(a) Performance and calibration throughout adaptation (b) Consistency maximization via Eqn. (10) (c) Entropy minimization (Tent [12])

Fig. 11. Comparisons of performance, calibration and stability using consistency loss in Eqn. (10) or entropy minimization loss (i.e., Tent) on
ImageNet-C (Gaussian noise, severity level=5) with ViT-Base. In Left, we split the dataset into 80% and 20% slices to conduct adaptation and to
evaluate the adapted model. We report the performance and the calibration of the adapted model every 75 batches with a batch size of 64. In the
Middle and Right, we evaluate the stability of consistency loss and Tent under various combinations of learning rates and adaptation steps per batch.
Consistency loss achieves substantially higher OOD performance and better stability while maintaining lower ECE.

results highlight that our consistency loss demonstrates remark-
able stability and benefits from increased adaptation steps (e.g.,
55.8% ⇐ 58.6%, the best performance under 1 and 5 adaptation
steps, respectively). In contrast, Tent [12] is highly sensitive to
the combination of learning rate and adaptation steps, where its
performance may deteriorate to as low as 1%, further indicating
its tendency to overfit. These findings collectively underscore
the superiority of our consistency loss regarding performance,
calibration, and stability, making it a more robust choice for TTA.

6 CONCLUSION

In this paper, we have proposed an Efficient Anti-forgetting Test-
time Adaptation method (EATA), to improve the performance
of pre-trained models on a potentially shifted test domain. To be
specific, we devise a sample-efficient entropy minimization strategy
that selectively performs test-time optimization with reliable and
non-redundant samples. This improves the adaptation efficiency
and meanwhile boosts the out-of-distribution performance. In
addition, we introduce a Fisher-based anti-forgetting regularizer
into test-time adaptation. With this loss, a model can be adapted
continually without performance degradation on in-distribution test
samples. Moreover, we design EATA with Calibration (EATA-C)
for test-time adapted model’s confidence calibration. To this end,
we present a consistency loss for calibrated model uncertainty
reduction and a sample-aware min-max entropy regularization for
confidence re-calibration, which improves the performance and
calibration of test-time adaptation. Extensive experimental results
on image classification and semantic segmentation demonstrate the
effectiveness of our proposed methods.
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