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Towards Long Video Understanding via
Fine-detailed Video Story Generation
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Abstract—Long video understanding has become a critical

task in computer vision, driving advancements across numerous

applications from surveillance to content retrieval. Existing video

understanding methods suffer from two challenges when dealing

with long video understanding: intricate long-context relationship

modeling and interference from redundancy. To tackle these

challenges, we introduce Fine-Detailed Video Story generation

(FDVS), which interprets long videos into detailed textual repre-

sentations. Specifically, to achieve fine-grained modeling of long-

temporal content, we propose a Bottom-up Video Interpretation

Mechanism that progressively interprets video content from clips

to video. To avoid interference from redundant information

in videos, we introduce a Semantic Redundancy Reduction

mechanism that removes redundancy at both the visual and

textual levels. Our method transforms long videos into hier-

archical textual representations that contain multi-granularity

information of the video. With these representations, FDVS is

applicable to various tasks without any fine-tuning. We evaluate

the proposed method across eight datasets spanning three tasks.

The performance demonstrates the effectiveness and versatility

of our method.

Index Terms—Foundation Models, Video Understanding,

Large Language Models.

I. INTRODUCTION

Video understanding aims to comprehend, interpret, and ex-
tract meaningful information from video data, which involves
a range of tasks aimed at replicating human-like understanding
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A woman in an orange apron is in the kitchen.

Fine-Detailed Video Story:

A woman in an orange apron is tossing
salad in the kitchen. There are a cabinetry
behind the woman, a bowl and a cup next
to the woman…

⋯

Our Method

womanbowl cup cabinetry

The action is
tossing salad!

Temporal-level info. on short clip:

Object-level info. on short clip:

Scene-level info. on short clip:

Fig. 1: Illustration of video understanding with LLMs. To
allow LLMs without visual perception to understand the video
content, we provide perception information from three levels,
i.e., object level, temporal level, and scene level.

of visual and temporal information present in videos. It has
become an important task in computer vision with a wide
range of applications, such as video surveillance [1], [2],
video auditing [3], and video retrieval [4], [5]. Despite notable
advancements, the majority [6], [7] are tailored for short-
duration videos (e.g., 5-30 seconds). In contrast, real-world
videos often involve complex events, spanning from a few
minutes to several hours.

Most existing methods [8]–[11] for long video understand-
ing employ a pre-trained backbone for deep feature extraction
and a task-specific head for prediction. These methods have
a significant drawback: the need for fine-tuning on extensive
annotated data when adapting to a new task. This hinders their
practical scalability, as the collection and annotation of long
videos in real-world scenarios is time-consuming and costly.
Many researchers [12]–[16] endeavor to leverage LLMs to
achieve open-ended comprehension of the video content. How-
ever, these methods either require substantial alignment fine-
tuning with video-text pairs or fail to achieve an accurate and
detailed understanding of long videos. This primarily stems
from two challenges in long video comprehension. First,
long videos exhibit highly intricate content and prolonged
temporal relationships. Accurately understanding long videos
demands intricate temporal reasoning as these videos often
unfold multiple events over time. Second, videos inherently
contain a significant amount of redundancy in the temporal
dimension [14], which may interfere with the understanding
and analysis of video content and introduce additional com-
putational overhead.

To achieve task adaptation across various tasks without
requiring finetuning, we propose Fine-Detailed Video Story
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generation (FDVS), which can be adapted to various down-
stream tasks by representing videos as hierarchical textual in-
formation. Specifically, we introduce a Bottom-up Video Inter-
pretation Mechanism aimed at simplifying the comprehension
process for long-term video description generation. We break
down videos into manageable clips based on keyframes. Sub-
sequently, we leverage well-trained vision foundation models
as perception agents to comprehensively extract visual infor-
mation from each frame within these clips. We then leverage
Large Language Models (LLMs) to interpret the content of
each short clip based on perception information, avoiding
the bulk input of all information from the entire video at
once. Finally, we instruct LLMs to summarize the video story
with clip descriptions. This method progressively organizes
and summarizes the fragmented information detected in the
video frames into a structured story, comprehending complex
video information at multiple granularities. This diminishes
the challenge of comprehending long video sequences and
mitigating the issue of essential information being obscured.

In addition, we propose a semantic redundancy reduction
strategy to reduce the redundancy from both the visual level
and the textual level to tackle the temporal redundancy issue.
For visual level redundancy elimination, we determine and
reduce the redundant frames within a clip via visual feature
similarities. To address situations where visual pixels change
due to factors like camera movement without altering content,
we further employ higher-level textual information to eliminate
redundant clips. It’s worth noting that our extracted hierarchi-
cal textual representations contain information about the video
at multiple scales, which are interpretable for both humans
and machines. We further explore a novel video understanding
framework by applying our hierarchical textual representations
rather than deep features across various downstream tasks
without any cross-modal training or task-specific finetuning.

Our contributions can be summarized as follows:
• We propose a long video understanding method named

Fine-Detailed Video Story generation (FDVS), which can
adapt across various tasks without any fine-tuning or
reliance on specific datasets.

• We develop a bottom-up video interpretation mechanism
that processes videos to multiple granularities of textual
information, facilitating comprehensive understanding of
long videos across various levels.

• We introduce a semantic redundancy reduction strategy to
reduce the redundancy from both the visual level and tex-
tual level, eliminating the interference from redundancy.

II. RELATED WORKS

A. Long-form Video Understanding

While video understanding methods have made significant
progress in tasks such as action recognition [17]–[22], video
retrieval [2], [4], [23]–[25], and temporal action localization
[7], [26]–[29], they are primarily designed for short videos.
Real-world videos, however, often last from minutes to hours,
consisting of multiple events. Long-form video understanding
poses particular challenges due to the complexity of content
and the spatio-temporal high dimensionality of the input.

Methods for understanding long videos need to balance perfor-
mance with efficiency. The methods can be grouped by long-
range dependency modeling and sparsity methods.

long-range dependency modeling methods aim to enhance
the long-temporal modeling capability. Several methods pro-
pose to achieve this through attention mechanisms and graphs.
For instance, LF-VILA [30] proposes a Temporal Window
Attention (HTWA) mechanism to model long temporal de-
pendency in long videos. VideoGraph [31] proposes to learn
an undirected graph from the dataset, where graph nodes rep-
resent the key concepts and edges represent the relationships
between these key concepts. SVAG [32] proposes Supervoxel
Attention Graphs for long-range dependency modeling. The
nodes of supervoxel attention graph are semantic supervoxels
consisting of objects and motion cues in the video, while
the edges are the spatiotemporal relations and feature similar-
ity. Recently, several methods [33]–[35] introduce Structured
State-Space Sequence layers proposed in [36] to capture long
temporal dependencies.

Sparsity methods aim to reduce the computational cost
of long-form video understanding. Sparse sampling methods
achieve this by sub-sampling meaningful frames from the
video. These methods select frames based on saliency [37],
adaptability [38], or multimodal guidance [39]. Since sparse
sampling unavoidably results in information loss, some meth-
ods [14], [40] aim to compress video content using a memory
mechanism.

Traditional approaches to video understanding often rely
on pretrained backbone networks for deep feature extraction,
followed by task-specific heads to make predictions. While
effective, these methods require fine-tuning on annotated
datasets for each new task, limiting their adaptability and
generalization. Additionally, these approaches typically handle
redundancy in video content by employing sparse sampling
strategies or attention mechanisms that target visual redun-
dancy alone, often neglecting cases where the visual content
changes but the semantic meaning remains unchanged.In con-
trast to previous approaches, we employ textual representation
to compress video content from the bottom up hierarchi-
cally. The extracted hierarchical textual representations can
be applied to various video understanding tasks that require
multi-grained information. Moreover, we introduce a semantic
redundancy reduction strategy that tackles redundancy at both
the visual and textual levels.

B. Video Foundation Models

The prevailing paradigm in building a video foundation
model entails the initial pretraining of the model on an
extensive large-scale video (or video-text) dataset, followed
by fine-tuning it for specific downstream tasks [41]–[45]. This
approach has demonstrated its effectiveness across various
applications, including video retrieval [6], [46] and human ac-
tion recognition [19], [47], [48]. The success of this approach
relies on end-to-end training, utilizing pretext pretraining tasks
such as masked language modeling [49], masked video mod-
eling [50], [51], video-language masked modeling [52], video-
text matching [53], and video-text contrastive learning [6],



[54]. However, a challenge arises when dealing with language-
related tasks, such as video question answering and video
captioning. These tasks require high-quality video-text pairs
with detailed textual annotations, which are often lacking in
the pretraining data. In this paper, we enhance the capability
for language-related tasks by leveraging a large language
model as the “brain” to organize the semantic information
extracted from visual models.

C. Video Understanding based on Large Language Models

Recent advancements in large language models [55]–
[57] have significantly enhanced the capabilities of language
generation. This progress have introduced innovative zero-
shot capabilities for handling complex visual tasks, such as
video question answering [58]–[61] and video captioning
[46], [62]–[64]. For instance, BLIP2 [65] and MiniGPT-4
[66] exhibit a plethora of advanced features enabling them
to execute a variety of visual tasks in a zero-shot manner.
This is achieved by coupling a frozen visual encoder with a
frozen LLM, integrated through a trainable projection layer.
Furthermore, video-language bridging methods [12]–[15] ex-
pand into the realm of video understanding by fine-tuning the
model with video-text paired data. However, a limitation arises
with these methodologies when they uniformly sample an
identical number of frames from videos of varying lengths, po-
tentially omitting crucial information from long-form videos.
Our method addresses this by implementing a keyframe-
based frame-sampling strategy that ensures the preservation
of essential information despite the sparse sampling approach.
Besides, some recent works [16], [67] translate video visu-
als into textual descriptions using perception tools such as
object detectors and action recognizers before this data is
processed by LLMs for further understanding. While exist-
ing methods may be inefficient due to their consideration
of all visual content, our Bottom-up Video Interpretation
Mechanism interprets long videos progressively, starting from
frame-level information, moving to clip-level content, and
finally summarizing the video story. This approach reduces
the complexity of understanding long videos. In addition, our
approach targets the selective removal of redundancy on both
visual and semantic content. This targeted reduction results in
more efficient processing, enhancing the overall performance
of the system.

III. FINE-DETAILED VIDEO UNDERSTANDING

A. Overview

Given an untrimmed video V = {x1, x2, · · · , xT } with T
frames, where xt denotes the t-th frame, we aim to represent
V as textual representations using existing pre-trained vision
foundation models f and LLMs fLLM. With multi-grained
textual representation, our method is able to adapt across
various tasks without any finetuning.

To comprehend the long-context videos comprehensively
and accurately, we propose a Bottom-up Video Interpretation
Mechanism to interpret videos from clips to video. Specif-
ically, we segment the given video V into K clips based
on keyframes (see Section III-B). For each clip, we reduce

Algorithm 1 General scheme of FDVS
Input: An untrimmed video V, pre-trained atomic agents f ,

pre-trained LLM fLLM.
// Video Segmentation.

1: Extract the key frames XK in video V.
2: Segment V into clips {vk}Kk=1 based on XK .
3: for vk in {vk}Kk=1 do

4: Uniformly sample frames from vi via Eq.(1).
5: Reduce the redundant frames in vk via Visual-level

Redundancy Elimination in Section.III-C.
// Extract perception information A for clip vk.

6: for fn(·) in Fa do

7: ank → fn(vk).
8: end for

9: Ak → {ank}Nn=1.
// Summarize clip information C.

10: ck → fLLM(Ak).
11: end for

12: C → {ck}Kk=1
13: Reduce the redundant clips via Semantic-level Redun-

dancy Elimination in Section.III-E
// Summarize video story V using fllm.

14: V → fLLM(C)
Output: Hierarchical information A, C, and V .

the redundant frames via our visual semantic redundancy
reduction strategy (see Section III-C). Then, we employ well-
trained foundation models to detect and textualize perception
information A (e.g., objects and attributes) from the remaining
frames. With this perception information, we then employ a
Large Language Model (LLM) to generate a textual repre-
sentation of the clip (i.e., chapter ck). (see Section III-D).
Next, we reduce redundant clip chapters with our textual
semantic redundancy reduction strategy (see Section III-E).
Furthermore, we leverage the LLM to reason and summarize
the remaining chapters into a story V for the whole video. Our
hierarchical textual representations (i.e., chapters and story)
contain multi-granularity information, which can be applied
to various video understanding tasks, e.g., video retrieval and
video question answering. The general pipeline is depicted in
Figure 2 and Algorithm 1.

B. Efficient Keyframe-based Video Segmentation

Our approach involves representing videos as textual repre-
sentations. These representations are meticulously constructed
from a series of elements, such as the categories and locations
of objects in the video. This concept draws inspiration from
the human understanding of the world, i.e., perceiving and
interpreting distinct elements with senses.

Previous methods [12], [15], [67] employ either uni-
form sampling mechanisms or tools like PySceneDetect [68]
for arbitrary-length video segmentation. However, these ap-
proaches suffer from the following drawbacks: potential frag-
mentation of scenes and events, loss of key information in
uniform sampling (especially in long videos), and low effi-
ciency due to the requirement to decode all frames. To address



KeyFrame-based 
Video Clip (𝑲× 𝟖 frames)

Clip 𝟏

Clip 𝒊

Clip 𝑲

Clip 
𝑲− 𝟏

Visual Redundancy 
Reduction 

Perception-based
Prompt Generation

Chapter 
𝟏

Chapter 
𝒊

Chapter 
𝑲− 𝟏

Chapter 
𝑲

Textual Redundancy
 Reduction 

Chapter 
𝒊

Chapter 
𝑲− 𝟏

Chapter 
𝑲

Chapter 
𝟏

Long Video Story

Video Retrieval

Partially Relevant 
Video Retrieval

Video QA

Downstream 
Video Tasks

Query: Two people slice up an 
apple and put it on a plate.

Q: What is this man doing?
A:  Teaching skiing skills.

⋯

LLM
 

LLM
 

This video shows a 
woman making salads 
and vegetables for 
dinner. The woman is 
shown preparing the 
salads and vegetables 
on the counter top 
next to her. She has an 
orange bowl on the 
table next to her, with 
red tomatoes and 
cucumbers. 
The video also shows a 
wine glass and a spoon. 
The woman is wearing 
an apron and has 
brown hair and glasses 
on her face. 

In the next frame, the 
woman is shown 
mixing ingredients in a 
kitchen. In the next 
frame, the woman is 
holding salad in a bowl 
on a kitchen counter 
top with greens and 
other vegetables in it …
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Fig. 2: General pipeline of our method. We extract a compact hierarchical textual representation rather than deep features for
downstream video understanding tasks. Given any video V , we initially segment and sample it into clips based on keyframes.
Redundant frames within each clip are removed using a Visual Redundancy Reduction strategy. Subsequently, we employ
three perception foundation models to extract visual information. An LLM describes the clip content using the perception
information. Redundant clips are removed via Textual Redundancy Reduction. Finally, LLM summarizes the video story with
the remaining chapters.

the above issues, we devise an efficient video segmentation
strategy that leverages the keyframes of the video. Specif-
ically, we first extract the keyframes, i.e., the intra frames,
XK = {xk}Kk=1, where XK are K keyframes sampled from
V .1 Based on the keyframes, we divide the video into K clips,
each beginning with xk, while ending with xk+1.

After obtaining the keyframe-based video clips, we uni-
formly sample a fixed number of frames (8 frames) following
previous methods [27], [62]. Formally, the video clip is
sampled as follows:

vk = {xt | t ↑ Su(xk, xk+1)} , (1)

where Su denotes the uniform sampling method.
In addition to using intra-frame for key frame, motion vec-

tors are another potential option. Motion vectors are estimated
during video compression based on the assumption of rigid
motion between consecutive frames. However, these motion
vectors may be inaccurate, particularly in complex or fast-
moving scenes, which can lead to segmentation errors. For
objects exhibiting non-rigid motion, such as people walking or
animals in motion, the shape and appearance of these objects
can change significantly between frames. Motion vectors,
which typically represent pixel-level translations, often fail
to capture such complex transformations, making them less
suitable for detecting scene boundaries or key content changes.

In contrast, intra-frame segmentation is independent of
inter-frame information, meaning each frame is fully decoded
and encoded independently. This provides a more detailed and
reliable representation of the visual content, especially when

1Extrating keyframes can be easily implemented by existing video decoding
library, e.g., decord [69].

dealing with long videos where the goal is to capture mean-
ingful transitions in scenes or events without being affected by
compression artifacts or estimation errors inherent in motion
vectors. Thus, our method leverages intra-frame to ensure the
accurate identification of key transitions, enhancing the quality
and reliability of the segmentation process.

C. Visual Semantic Redundancy Reduction

Neighboring frames of a video often share the same environ-
ment and background, with only slight positional changes in
foreground objects, resulting in visual redundancy. We should
remove these redundant information since video understanding
focuses more on varying content. Existing methods [12], [13],
[15], [16], [67] typically involve either uniformly sampling a
fixed number of frames or employing a significantly reduced
frame rate for videos of various lengths. This methods only
partially reduces redundant frames but also tends to discard
critical information.

To address this, we propose a visual variation-aware re-
dundancy reduction strategy, which removes redundant frames
with minor variations in visual appearance and retains frames
with more dynamic information. Specifically, for each clip vk
(as previously defined in Eqn. (1)), we use xk to denote the
key frame and xt to denote the subsquent frames sampled in
this clip. We extract the visual feature ht for each frame xt by
ht = fimg(xt), where fimg is the pretrained image encoder, e.g.,
CLIP [70]. Then we compute the cosine distance st between
xt and key frame xk by

st =
hk · ht

↓hk↓ · ↓ht↓
, (2)



Reduced Clip
(≤ 8 frames)

① Information Extraction via
Three-level Foundation Models

Object-Level Info.

{scene: a woman is 
mixing carrots in a bowl ... }

A chat between a user who p
rovides information about t
he content in a video and a
n assistant who can summari
ze the content of the video 
based on the information pr
ovided by user. 
User: 
{"objects": <O-level info.>, 
"action": <T-level info.>,
"caption": <S-level info.>}.

② Prompt Construction 
via Predefined Template

Video Prompt

{action: tossing salad}
Temporal-Level Info.

Scene-Level Info.

cup: [0.70, 0.70, 0.11, 0.26]

bowl: [0.36, 0.79, 0.50, 0.40]

cup: [0.72, 0.71, 0.12, 0.28]

Fig. 3: Illustration of information extraction via three-level
agent and prompt organization via a predefined template.
We leverage well-trained vision models as perception agents
to comprehensively extract visual information from frames.
Then, we leverage LLMs to interpret each clip’s content based
on perception information.

where hk=fimg(xk) is the feature of the key frame. We remove
the redundant frames in clip vk when their similarity distance
is higher than the threshold s̄, which is defined as the average
of all similarity distances st within this clip.

D. Perception-based Prompt Generation

Videos comprise a wealth of information, manifesting
through both spatial and temporal dimensions. Spatial dimen-
sions illustrate the objects with corresponding positioning and
scene’s content. Conversely, temporal dimensions sketch the
progression of events, providing a narrative flow. We employ
three-level foundation models to capture information across
specific dimensions (see Figure 3). At the object level, we use
an object detector (e.g., Grounding DINO [71]) to identify
categories and positions of objects within the image. At the
temporal level, we deploy an action recognizer (e.g., Intern-
Video [67]) to classify the overall temporal actions observed
in the footage. At the scene level, we apply an image captioner
(e.g., BLIP2 [65]) produces multiple sentences to describe the
scene comprehensively. Formally, We extract information Ak

for the k-th clip vk by:

ank = fn(vk), Ak = {ank}
N
n=1 , (3)

where fn is the n-th perception model at different levels, ank
is the information extracted by fn from the k-th clip.

Subsequently, we exploit LLMs to summarize the percep-
tion information {Ak}Kk=1, derived from a series of video
clips {vk}Kk=1. A naive approach is to directly input all the
extracted perception information to LLMs. However, the direct
summarization of all information {Ak}Kk=1 by LLMs would
be challenging, primarily owing to the complex objects and
long temporal relationships inherent in videos. To mitigate this
difficulty, our approach involves a hierarchical summarization
process at both the clip and video level. Specifically, we
arrange the perceptual information Ak of each clip using
a predefined prompt template in Table II, maintaining their
temporal sequence. This structured information enables the
LLM to generate a concise chapter for each clip, denoted as ck,

Fig. 4: Comparison against image caption methods on
MSRVTT over the zero-shot text-to-video retrieval task.

based on its corresponding perceptual information Ak. Next,
we compile these chapters into a set C = {ci}Li=1 and feed
them into the LLM, which then constructs a cohesive narrative
V for the entire video. The process can be formalized as:

ck = fLLM(Ak), C = {ck}Lk=1 , V = fLLM(C). (4)

It is important to note that before we feed the chapters C into
the LLM, we would reduce textual redundancy among the
chapters, which is further detailed in Section III-E.

Our FDVS, which generates hierarchical textual representa-
tions of videos, supports a wide range of downstream tasks,
such as video retrieval and video question answering. How-
ever, relying solely on Image Caption models is insufficient
for these purposes. The ”Image Caption Only” results in
Figure 4, showcasing a mere 1.7% R@1 for the text-to-video
retrieval task. The reason may be that the Image Caption model
provides fragmented and potentially redundant information,
leading to poor performance. We observe substantial improve-
ments when we apply summarizing hierarchically with LLMs
(29.3 R@1) highlighting the effectiveness of our method.
The culmination of employing our comprehensive three-level
perception models, i.e., Full method (Ours), further enhances
performance, achieving a notable 31.6 R@1. This progression
underscores the superiority and effectiveness of our FDVS in
advancing video understanding.

E. Textual Semantic Redundancy Reduction

In real-world scenarios, the video shooting process is diffi-
cult to control, such as camera movement and zooming, which
may bring about changes in appearance, but the semantic
content is consistent. For example, we may shoot the same
content from different angles, especially in a movie. In other
words, in the chapter set C= {ci}Li=1, when a chapter ci→ is
similar as the previous ones, this clip ci→ can be regarded as
redundancy and should be reduced.

To this end, we introduce similarity measure di=sim(hi, M̄)
between hi and short-term historical information M̄ to help
determine whether we should remove the clip vi. Here,
hi=ftxt(ci) denotes the textual semantic features for chap-
ter ci, extracted using a pre-trained text encoder ftxt, e.g.,
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Sentence-BERT [72]. The historical average M̄ is computed as
M̄ = 1

l

∑i
j=i→l hj , reflecting the average textual features of

the preceding l chapters. In cases where obtaining l chapters
is not possible, we adjust to use as many as are available,
ensuring non-zero historical context. To avoid the selection of
the similarity threshold, we remove a chapter if its similarity di
exceeds the mean similarity d̄, calculated across all chapters.

TABLE I: The datasets used for evaluations.

Task Datasets
PRVR ActivityNet Captions, Charades

Video Retrieval ActivityNet Captions, MSRVTT
Video QA MSRVTT-QA, ActivityNet-QA, EgoSchema, NExT-QA

IV. EXPERIMENTS

We evaluate FDVS on three tasks following the public
settings: partially relevant video retrieval (PRVR) [73], [74],
video retrieval [46], [75], and video question answering [14],
[15] on the datasets specified in the Table I. In addition, we
conduct extensive ablation studies to verify the contribution of
every component.

A. Dataset Details

ActivityNet Captions [64] was initially designed for the dense
video captioning task. It includes 20,000 untrimmed videos of
daily activities downloaded from YouTube. The average length
of the videos in this dataset is the largest among PRVR datasets
with 180 seconds. On average, each video has approximately
3.7 moments with corresponding sentence descriptions. The
average length of each sentence is 13.48 words. For a fair
comparison, we use the same data partition as in [73], [74]
for PRVR. For video retrieval, we follow previous works [46],
[75]–[78] evaluate paragraph-to-video retrieval on which we
concatenate all the sentences of each video to a paragraph. We
report the video retrieval results on the val1 split.
Charades-STA [79] is an extension of Charades [80] that
incorporates sentence temporal annotations. It comprises 6,670
videos with 16,128 sentence descriptions. On average, each
video has approximately 2.4 moments with corresponding
sentence descriptions. We adhere to the data partition outlined
in [73] and evaluate our method on the test dataset.
MSRVTT [81] is a well-known dataset for text-video retrie-
veal and video question answering. It is composed of 10,000
videos with durations that range from 10 to 32 seconds. Each
video is annotated with 20 sentences by Amazon Mechanical
Turks. We follow JSFusion [59] use the test data ’test 1k-A’,
which contains 1,000 video-text pairs, for evaluation of zero-
shot retrieval performance.
MSRVTT-QA [60] is a video question answering dataset
based on MSRVTT dataset [81]. The question-answer pairs
are generated from video descriptions using a question auto-
generation tool [82]. The generated question-answer pairs are
composed of 243K open-ended questions.
ActivityNet-QA [61] is derived from ActivityNet dataset [64].
It is composed of 58,000 QA pairs and 5,800 videos. This
dataset is focused on verifying the long-term spatio-temporal
reasoning performance of the QA models.

EgoSchema [83] is a new long-form video question-answering
dataset introduced recently. It consists of 5,000 multiple-
choice question-answer pairs, involving 250 hours of egocen-
tric videos derived from Ego4D [84]. Each question in this
dataset necessitates the selection of one correct answer from
five options. We evaluate our method on the subset of 500
questions with ground truth answers released by the authors.
NExT-QA [85] is a video question answering benchmark
designed to propel video understanding from mere descrip-
tion to deeper explanation of temporal actions. It comprises
5,440 videos accompanied by approximately 52K manually
annotated question-answer pairs. These pairs are categorized
into causal, temporal, and descriptive questions.

B. Experimental Setup

Implementation Details. We employ GroundingDINO [71]
with an open-vocabulary capability to detect objects present
in the video. We set the box threshold as 0.4 and the text
threshold as 0.25. The target categories for detection are
defined as the intersection of the categories in COCO and
Object365, encompassing a wide array of everyday objects.
With the pre-trained BLIP2 [65] as our image captioner, we
generate textual descriptions for the video frames. We apply
InternVideo [54] as the action recognizer to identify the action
categories of Kinetics-400 [86] in clips. For clip descriptions
and video narrative generation, we employ Vicuna-v1.5 [87],
trained by fine-tuning Llama 2 on user-shared conversations
collected from ShareGPT [88]. We set the temperature as 0.7,
the repetition penalty as 1.0, and the maximum number of
tokens as 100. We use the cosine distance function in semantic
redundancy reduction. We use the image encoder of CLIP [70]
in visual redundancy reduction and Sentence-BERT [72] as
the text encoder in semantic redundancy reduction. We set
the length L of local memory used in semantic redundancy
reduction as 35 based on the ablation study in Table XVIII.

It is worth noting that the foundation models utilized in our
method are highly flexible. These foundation models can be
substituted or incorporated as required for different tasks. It
can further enhance the video understanding capabilities of our
approach when employing more robust foundation models.
Details about applying long stories to downstream tasks.

Based on our extracted textual representation, we transform
PRVR and video retrieval into a text-to-text retrieval task. We
reconceptualize the text-to-video retrieval challenge as a text-
to-text retrieval task. The match score is calculated between
the query text and the generated descriptions for each video,
including clip descriptions and the whole video story, rather
than the original video. This approach enables us to achieve
multi-granularity retrieval through our multi-level textual rep-
resentations. It is adaptable to different granularities of query
text. The same methodology is employed for video retrieval,
a higher-level retrieval task. We employ AnglE [89], obtained
by fine-tuning LLaMa [57] on semantic textual similarity, to
conduct the retrieval task.

Moreover, our textual representations are rich in detail,
paving the way for more complex video understanding tasks,
such as video QA. Concretely, we use the reconstructed
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TABLE II: The prompt templates for image caption, clip description, video story summarization, video question answering,
and short answer summarization.

Prompt Template
Image

Caption
Describe this picture in as much detail as possible, including where this picture is located, what objects are there and what color they
are. Answer:

Clip
Description

A chat between a user who provides information about the content in a video and an assistant who can summarize the content of

the video based on the information provided by the user. User: {“action category”: <clip action>, “objects”: <object>, “caption”:

<image caption>}. Assistant:

Video Story

A chat between a user who provides information about the content in a video and an assistant who can describe the content of the

video in detail using ‘first’, ‘then’, ‘after that’, and ‘finnally’ based on the information provided by the user. User: At the beginning

of the video, <clip description1>. Early in the video, <clip description2>. Later in the video, <clip description3>. At the end of

the video, <clip description4>. Assistant:

Video QA

<s>[INST]
<<SYS>>\n
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible. The User will provide information about the
content in a video and ask you a question about this video. You should answer the question winthin 100 word based on the information
provided by the user.\n
<</SYS>>\n\n
[/INST]
Sure, I can help you with that! </s>
<s> [INST]<video info> Answer the following question within 100 word base on the infomation above: <question>[/INST] Short
Answer in 100 word without any explaination:

Short Answer
Summariza-

tion

<s>[INST]
<<SYS>>\n
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible. When User provides a question and a long
answer to the question, you should summarize the long answer into 1 or 2 word.\n
<</SYS>>\n\n
[/INST]
Sure, I can help you with that! </s> <s>
[INST]Question: what is the color of the pants of a person kneeling on one knee Long answer: The color of the pants of the person
kneeling on one knee in the video is black.[/INST] Short Answer in 1 or 2 word: black
[INST]Question: what is the person in black doing Long answer: The person in black is holding a soccer ball and standing next to
the person playing soccer on the beach.[/INST] Short Answer in 1 or 2 word: beach soccer
[INST]Question: is the person in white indoors Long answer: No, the person in white is not indoors. The video frames show them
standing next to birds and other objects outdoors, with trees, grass, and a river in the background.[/INST] Short Answer in 1 or 2
word: no
[INST]Question: is the person in white outdoors Long answer: Yes, the person in white is outdoors in all the frames.[/INST] Short
Answer in 1 or 2 word: yes
[INST]Question: <question> Long answer: <long answer>[/INST] Short Answer in 1 or 2 word:

representations as reference information for LLMs. However,
recognizing that not all information is pertinent to the question,
we initially identify relevant snippets and eliminate irrelevant
ones by assessing the similarity between the question and
the snippet descriptions. Subsequently, we input the clip
description of the relevant clip and the story of the entire
video into the LLMs as reference information, tasking them
with answering questions based on this contextual input. We
organize the question, selected clip descriptions, and video
story according to the prompt template in Table II.
Details about Prompt Templates. In our framework, all
models do not require any subsequent training and fine-tuning
and are only used for inference. We will specify the prompts
used in our proposed framework in this section.

1) Image Caption: In this paper, we employ BLIP2 [65],
a multi-modal foundation model known for its robust zero-
shot capabilities, as the image captioner. Each remaining
video frame after visual semantic reduction, along with the
corresponding prompt in Table II, is input into an BLIP 2 to
generate detailed scene descriptions.

2) Clip Description: For each clip vk, the perceptual in-
formation Ak is organized using the corresponding template
in Table II. The LLMs infer the content of vk based on Ak.
The <clip action> denotes the action category within vk, and
<image caption> in template is the remaining frames’ image
captions, organized as ’frame <t>: <caption>’, where <t> is

the index for frame. <object> refers to the object categories,
positions, and sizes detected after removing redundant frames.
The image is divided into nine regions [top-left, top, top-
right, left, center, bottom-left, bottom, bottom-right], and each
object’s position is determined by the center coordinate within
these regions:

• Top-left: x < 0.33, y < 0.33
• Top: 0.33 ↔ x < 0.66, y < 0.33
• Top-right: x ↗ 0.66, y < 0.33
• Left: x < 0.33, 0.33 ↔ y < 0.66
• Center: 0.33 ↔ x < 0.66, 0.33 ↔ y < 0.66
• Right: x ↗ 0.66, 0.33 ↔ y < 0.66
• Bottom-left: x < 0.33, y ↗ 0.66
• Bottom: 0.33 ↔ x < 0.66, y ↗ 0.66
• Bottom-right: x ↗ 0.66, y ↗ 0.66

The size is categorized as [large, medium, small] based on the
area occupied:

• small: area < 0.33
• medium: 0.33 ↔ area < 0.66
• large: area ↗ 0.66
3) Video Story: Chapters of all clips are organized using

the prompt template in Table II. The total duration is divided
into four ranges:[beginning, early, later, final], and clips are
categorized based on their start positions. The <clip descrip-

tion1> to <clip description4> fields are filled with chapters
from the corresponding time ranges in chronological order.
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TABLE III: Results of PRVR on ActivityNet Captions and Charades-STA.

Method ActivityNet Captions Charades-STA
R@1 R@5 R@10 R@1 R@5 R@10

Supervised

CE [24] 5.5 19.1 29.9 1.3 4.5 7.3
DE [25] 5.6 18.8 29.4 1.5 5.7 9.5

ReLoCLNet [90] 5.7 18.9 30.0 1.2 5.4 10.0
XML [91] 5.3 19.4 30.6 1.6 6.0 10.1

MS-SL [73] 7.1 22.5 34.7 1.8 7.1 11.8
DL-DKD [92] 8.0 25.0 37.5 - - -

Zero-shot

MovieChat [14] 6.7 20.0 29.1 1.6 4.8 7.6
VideoChat [12] 7.7 19.8 27.5 1.6 4.7 7.4

VideoLlaVA [93] 9.2 24.8 35.1 1.2 4.1 7.0
FDVS (ours) 14.0 32.5 43.9 1.8 5.6 9.5

4) Video QA: The video information and questions are
organized using the template in Table II, with LLMs answering
based on the hierarchical textual information. <video info>
includes the relevant clip chapters and the story, while <ques-

tion> is the question to be answered.
5) Short Answer Summarization: Since the answers an-

swered by LLMs tend to be more detailed, while the dataset
gives only one to two words of ground truth. For exact
matching, we use LLMs to further summarize the answers
to 1 or 2 words based on the in-context learning capability.
This prompt instructs LLMs to summarize long answers into
1-2 word short answers. <question> is the question being
answered, and <long answer> is the detailed response that
needs summarization.

C. Evaluation on Partially Relevant Video Retrieval

Partially Relevant Video Retrieval (PRVR) aims to retrieve
the partially relevant untrimmed videos, which contain at least
one internal moment relevant to the given query, from a large
collection of untrimmed videos. It is a more practical and
fine-grained video understanding task than video retrieval.
Given the absence of published work on zero-shot PRVR, we
benchmark our approach against supervised learning methods.
Furthermore, we demonstrate the superiority of our generated
text representations by comparing our method with other large
language models using the same retrieval strategy. Table III
shows the results. Despite our method and the Video Lan-
guage Model (VLM) performing the PRVR task in the zero-
shot setting, we still achieve comparable or even superior
performance compared to supervised learning methods. This
underscores the feasibility and effectiveness of utilizing textual
representations for fine-grained video understanding tasks.
Notably, our method outperforms supervised learning methods
by a substantial margin on ActivityNet Captions, which is a
long-form video dataset in PRVR, showcasing the capability
of our proposed framework to extract textual representations
with comprehensive and accurate details.

D. Evaluation on Video Question Answering

We further evaluate the video understanding capability on
video questing answering tasks following [14], [15]. In addi-
tion to traditional exact matching, we also apply LLM-Assisted
Evaluation for the video question-answering task following

the methodology outlined in [14], [15]. Given the question,
correct answer, and the predicted answer by the model, GPT-
3.5 is expected to provide a True or False judgment along
with a relative score ranging from 0 to 5. The exact matching
accuracy and LLM-Assisted evaluation results are reported in
Tables IV and V, respectively.

In exact matching, we compare our method with the previ-
ous multi-modal foundation model, including Just Ask [94],
LAVENDER [95], MERLOT Reserve [96], FrozenBiLM [97],
and HiTeA [98]. The results show that our approach achieves
superior performance in terms of exact matching accuracy.

In the LLM-Assisited evaluation, the comparison methods
include VideoChat [12], MovieChat [14], LLaMA-VID and
VideoLLaVA [93]. In comparison to previous large video-
language models designed for video understanding, our frame-
work also achieves superior performance in video question-
answering, even without any training or fine-tuning on paired
video-text data. To further showcase the effectiveness of our
method in long-form video understanding, we present the
question-answering accuracy on the EgoSchema [83] and
NExT-QA dataset [85] in Table VI and Table VII. The
comparison methods on EgoSchema consist of Bard, GPT-4,
and LLoVi. Following previous works [100], [107], we employ
only the language modality of proprietary models. Even when
compared to these large-scale proprietary models, our Fine-
Detailed Video Stories (FDVS) method consistently achieves
superior performance on long-form video QA. For example,
our FDVS achieves 11.4% improvements over GPT-4 Turbo
without vision, and outperforms Bard with ImageViT by 9.4%.
Despite LLoVi demonstrating superior performance in long-
form video understanding compared to Bard and GPT-4, it still
falls short of our FDVS when utilizing the same large language
model to comprehend video content. These results underscore
the potency of our method in long-form video understanding.
On NExt-QA, we compare our FDVS with the supervised
methods and zero-shot methods. Our method demonstrates the
best performance among zero-shot approaches, achieving an
overall average accuracy that surpasses the best competitor,
VFC, by 6.4%. Remarkably, our results are comparable to
the supervised fine-tuned VFC, which underscores the strong
capability of our method in long-form video understanding.

The success of our approach stems from the fact that, in
contrast to other methods, our hierarchical textual representa-
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TABLE IV: Exact matching accuracy (%) of zero-shot video
question answering on MSRVTT-QA and ActivityNet-QA. The
best performance is denoted by bold numbers.

Method #V-T Data MSRVTT-QA ActivityNet-QA
Just Ask [94] 69M 2.9 12.2
LAVENDER [95] 5M 4.5 -
MERLOT Reserve [96] 1B 5.8 -
FrozenBiLM [97] 10M 6.4 16.7
HiTeA [98] 5M 8.6 -
FDVS (ours) 0M 14.8 21.2

TABLE V: LLM-Assisted evaluation results of zero-shot video
question answering on MSRVTT-QA and ActivityNet-QA. The
best performance is denoted by bold numbers.

Method #V-T Data MSRVTT-QA ActivityNet-QA
Acc.(%) score Acc.(%) score

FrozenBiLM [97] 10M 16.8 - 25.0 -
VideoChat [12] 27M 45.0 2.3 26.5 2.2

Video-ChatGPT [15] 2M 49.3 2.8 45.3 3.3
MovieChat [14] 410M 49.7 2.9 51.5 3.1
VideoChat2 [12] 67M 54.1 3.3 49.1 3.3

LLaMA-VID [13] 2M 58.9 3.3 47.5 3.3
FDVS (ours) 0M 53.7 3.3 53.4 3.4

User: Why do they want to drive this kind of car?
VideoLlaVa: The video does not provide any information about the reason
why they want to drive this kind of car. However, it is possible that they are
using it for a specific purpose, such as transporting goods or people, or for
recreational purposes.
Ours: Based on the video information provided, it is likely that they want to
drive these types of cars to maintain the lawns and keep the area clean and
well-manicured.

User: What is the relationship between the two dancers in the video?
VideoLlaVa: The video does not provide any information about the
relationship between the two dancers. However, it is clear that they are
performing a choreographed dance routine with swords.
Ours: The two dancers in the video are partners, as they are dancing
together and performing various movements and poses in unison.
suggesting a sense of unity and harmony between them.

User: What is the person in blue shoes doing?
VideoLlaVa: The person in blue shoes is walking in the water with a stick.
Ours: Based on the information provided, the person in blue shoes is
floating down the river on an inflatable tube.

User: What happened before the person in the video washed his hands?
VideoLlaVa: He was seen standing in front of a painting of a woman.
Ours: He was probably doing some activity with his hands, such as
preparing food or using the restroom, that made it necessary for him to
wash his hands.

Fig. 5: Qualitative results of our method and VideoLLaVa [93]. The videos are from ActivityNet Captions.

tion can comprehensively extract and retain video information,
spanning from details to high-level semantic information.
Video question-answering tasks usually entail questions about
specific details, an aspect where prior methods may lose cru-
cial information or be affected by interference from redundant
information. We also present some qualitative results in Fig. 5.
The visualized results show that our method achieves superior
and accurate performance in content comprehension, causal
reasoning, and relationship understanding.

E. Evaluation on Video Retrieval

We conduct a comparative evaluation of our method with
two groups of approaches for zero-shot video retrieval.
One group comprises multi-modal foundation models trained
across video and text data, including VideoCLIP [6]. The other

TABLE VI: Multiple-choice QA accuracy on EgoSchema. The
best performance is denoted by bold numbers.

Method Acc.(%)
Random Choice 20.0
SeViLA [99] 25.7
Bard only (blind) [100] 27.0
GPT-4 Turbo (blind) [100] 31.0
mPLUG-Owl [101] 33.8
Bard + ImageViT [100] 35.0
LLoVi [102] 40.4
Bard + ShortViViT [100] 42.0
FDVS (Ours) 42.4

TABLE VII: NExT-QA video question answering results. We
report the accuracy for both the supervised and zero-shot
methods.

Method Cau. (%) Tem. (%) Des. (%) All(%)
SUPERVISED

ATP [103] 48.3 46.7 58.9 49.2
Temp [103] 48.6 49.3 65.0 51.5

TAATP [104] 53.1 50.2 66.8 54.3
VGT [104] 52.3 55.1 64.1 55.0
MIST [58] 54.6 56.6 66.9 57.1
VFC [105] 57.6 53.3 72.8 58.6

ZERO-SHOT
Flamingo [106] - - - 26.7

CLIP [70] 43.6 38.1 57.0 43.9
InternVid [67] 43.4 48.0 65.1 49.1

VFC [105] 45.4 51.6 64.1 51.5
FDVS 58.8 51.3 69.7 58.1

group involves LLM-based methods that extend Large Lan-
guage Models (LLMs) to the video modal, such as VideoChat
[12] and MovieChat [14]. For multi-modal foundation models,
we directly test and report the performance of their models
on the zero-shot video retrieval task. As large video language
models cannot be directly used for video retrieval, we evaluate
their performance using the same technical approach as ours.
This involves using these models to generate a description for
each video and then performing text retrieval. Our approach
can also be seen as a way to extend the multi-modal capa-
bilities of LLMs. The results on MSRVTT are presented in
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TABLE VIII: Results of zero-shot video retrieval on MSR-
VTT. # V-T Data means the number of video-text paired
data used to pre-train or finetune the model. The number I

and II represent multimodal-based methods and LLM-based
methods, respectively.

Method # V-T Data MSRVTT
R@1 R@5 R@10

I

VideoCLIP [6] 137M 10.4 22.2 30.0
ALPRO [108] 5M 24.1 44.7 55.4
VIOLET [52] 183M 25.9 49.5 59.7

Singularity [109] 5M 28.4 50.2 59.5
HiTeA [98] 5M 29.9 54.2 62.9

II

VideoLLaVA [93] 2M 18.9 36.0 43.7
MovieChat [14] 410M 19.6 39.8 49.4
VideoChat [12] 27M 23.1 44.5 56.0

FDVS (ours) 0M 31.6 56.8 65.3

TABLE IX: Results of zero-shot video retrieval on ActivityNet
Captions. #V-T Data means the number of video-text paired
data used to pre-train the model.

Method #V-T Data ActivityNet Captions
R@1 R@5 R@10

MovieChat [14] - 14.9 37.2 50.7
VideoChat [12] 27M 17.1 36.3 46.6
VideoLlaVa [93] 2M 21.2 46.1 58.5

FDVS (Ours) 0M 28.4 57.5 71.1

Table VIII. The results on ActivityNet Captions are shown in
the Table IX.

Even though our method is not trained on any video-text
pairwise data, it still achieves a remarkable performance on
the video retrieval task. Our method outperforms all the other
methods that draw on LLMs and even outperforms some
pre-trained foundation models that are specialized for video
retrieval tasks, such as VideoCLIP [6], ALPRO [108], and
VIOLET [52]. Compared with previous LLM-based methods,
our proposed approach achieves a significant performance gain
with 7.2% on R@1 metric on ActivityNet Captions. The
ActivityNet Captions are considered as a long-form video
dataset. The superior performance on ActivityNet Captions
demonstrates the strong comprehension of our method for
long-form videos. This demonstrates the high quality of the
hierarchical textual representations generated by our method
and the feasibility of using textual representations for the
downstream video understanding tasks.

F. Further Experiments and Discussions

Effect of storage saving. Unlike previous methods such as
[6], [46], [98], which pre-extract deep features and store them
for downstream tasks, our approach advocates the extraction
and storage of hierarchical textual representations. This not
only contributes to improved interpretability but also enhances

TABLE X: The average storage cost (bytes) of different
methods for each video in MSRVTT.

Method Clip4Clip HiTeA VideoClip FDVS (ours)
Avg. Storage 840.0 168.0 280.0 87.3

TABLE XI: Zero-shot video retrieval results and storage cost
(bytes) on MSRVTT using different sampling strategy. The
default settings used in our framework are in the grey row.

Sample Strategy R@1 R@5 R@10 Storage Cost →
All frames 30.9 53.5 64.7 89.2

Uniform sampling 30.9 51.4 62.6 319.8
Keyframe-based sampling 31.6 56.8 65.3 87.3

storage efficiency for downstream tasks. We present the stor-
age costs of features extracted by both previous methods
and our textual representations in Table X. Remarkably, the
storage cost of our method is significantly lower than other
approaches. Particularly noteworthy is the fact that, compared
to Clip4Clip [46], our method achieves an impressive 89.6%
reduction in storage costs.
Effect of different sampling strategies. We propose an
efficient keyframe-based sampling method that isolates video
clips such that most frames within a clip belong to the same
scene or event. This approach enhances the relevance and
coherence of the sampled content. There are two alternative
sampling methods: the uniform sampling method used in
existing methods [12], [16], [67], which segments videos into
clips consisting of 8 frames without overlap, and the all-frame
sampling method, which samples all frames from segmented
clips and subsequently removes redundant frames using our
visual semantic redundancy reduction strategy. We perform
an ablation study to evaluate the effect of different sampling
strategies. The results shown in Table XI demonstrate the
effectiveness of our sampling strategy on both performance
and storage efficiency.
Effect of redundant information reduction. Videos often ex-
hibit substantial redundancy in the temporal dimension. Firstly,
the surrounding frames of a video frame typically feature
the same environment, background, and objects, with only
minor variations in the position or appearance of foreground
objects, resulting in visual redundancy. Additionally, the video
shooting process is often intricate, involving shot switching,
camera movement, and zooming. While these actions may
introduce visual changes, the underlying semantic information
remains consistent, leading to semantic redundancy.

In this paper, we implement redundant information re-
duction at both the visual and semantic levels to mitigate
computational costs and interference. The effectiveness of this
redundant information reduction is demonstrated in Table XII.
The results indicate that both visual-level and semantic-level
redundant reduction enhances the performance of our method
in zero-shot video retrieval. This suggests that our proposed
redundant information reduction method not only reduces
unnecessary computational overhead but also contributes to
the generation of more accurate textual descriptions.
Effect of perception information. In our framework, we
exploit three perceptual models—an object detector, an ac-
tion recognizer, and an image captioner—to capture different
aspects of video content, specifically object (spatial), temporal
(action), and scene-level information. We performed ablation
studies on MSRVTT and ActivityNet Captions to evaluate
the contribution of each perceptual model to the overall
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performance. The results are reported in Table XIII.
Our observations indicate that the image captioner plays

a pivotal role in hierarchical text feature generation, as it
furnishes the majority of content information, encompassing
objects, scenes, events, attributes, etc. The object detector has
the least impact on textual representation generation since
most object information is already covered in image captions.
Furthermore, relying solely on the change in object position
and size information in each frame makes it challenging for
Large Language Models (LLMs) to infer the events occur-
ring in the video. Although the object detector and action
recognizer contribute less individually, their combined usage
is most effective when generating textual representations.
This effectiveness arises from the complementary information
provided by object information and action categories, which
can augment image captions and rectify hallucinations that
may occur in image captions.

An alternative approach is to use a video captioner instead
of the combination of an image captioner and an action
recognizer. To explore this, we conducted additional experi-
ments using zero-shot video retrieval on the MSRVTT dataset.
Specifically, we replaced the image captioner and action
recognizer with a video captioner, employing VideoChat [12]
as the video captioner to generate captions for each video clip.
The experimental results, presented in Table XIV, indicate that
the performance of the combined image captioner and action
recognizer significantly surpasses that of the standalone video
captioner. The superior performance of the combined approach
can be attributed to the detailed and accurate information
captured by image captions and action categories, which
the video captioner alone struggled to match. While video
captioners generally summarize both visual and temporal
information, they often fail to capture the fine-grained details
and dynamic aspects that are critical for comprehensive video
understanding. The image captioner excels at frame-level
detail extraction, while the action recognizer provides explicit
temporal dynamics, together forming a richer representation
of the video content. Our method requires no training or fine-
tuning on any data. Therefore, all perceptual models are plug-
and-play in FDVS, and it is flexible to select and add different
models as needed for various tasks.
Effect of different foundation models. In our proposed
framework, the selection of foundation models is designed
to be flexible, allowing for customization based on specific

TABLE XII: Ablation on Redundant Information Reduction.
We evaluate the effects by conducting zero-shot text-to-video
retrieval on ActivityNet Captions. Vis. Redu. denotes visual
semantic redundancy reduction, while Text. Redu. represents
textual semantic redundancy reduction The default settings
used in our framework are in the grey row.

Text. Redu. Vis. Redu. R@1 R@5 R@10
24.3 50.3 62.1

↭ 26.2 54.2 68.3
↭ 26.9 54.6 68.2

↭ ↭ 28.4 57.5 71.1

TABLE XIII: Ablation on perception information by con-
ducting zero-shot text-to-video retrieval on MSRVTT and
ActivityNet Captions. Object, Action, and Caption represent
the object detector, action recognizer, and image captioner,
respectively. The default settings are in the grey row.

Perception Information MSRVTT ActivityNet
Object Action Caption R@1 R@5 R@10 R@1 R@5 R@10
↭ 1.5 5.8 10.1 0.4 2.5 4.1

↭ 2.7 9.8 16.8 0.6 2.7 4.7
↭ 30.2 54.4 65.1 24.4 51.5 65.5

↭ ↭ 5.1 14.9 24.4 3.0 11.4 20.8
↭ ↭ 30.7 54.5 64.1 26.1 53.1 67.6

↭ ↭ 30.9 56.7 66.1 27.4 54.8 68.7
↭ ↭ ↭ 31.6 56.8 65.3 28.4 57.5 71.1

application requirements. For the visual semantic redundancy
reduction component, we utilize a CLIP-base model as the
image encoder to extract visual features from video frames.
While for generating clip chapters and video stories, we
employ Vicuna-7B.

To evaluate the impact of different models, we conducted
ablation experiments using various image encoders and large
language models (LLMs). The results of these experiments are
presented in Table XV. Notably, our findings indicate that uti-
lizing larger variants of the CLIP model as the image encoder
significantly enhances the performance of our visual semantic
redundancy reduction mechanism. Similarly, when employing
more powerful LLMs, such as Vicuna-13B and ChatGPT 3.5,
we observe further improvements in framework performance.
However, for efficiency reasons, our implementation utilizes
smaller models. These experimental results underscore the
flexibility of our approach, demonstrating that the choice of
foundation models can be tailored to meet specific application
needs, thereby maximizing effectiveness while maintaining
operational efficiency.
Performance across various Video Categories. We use
multiple perception models to extract information from videos.
Among these foundation models, GroundingDINO [71] and
BLIP2 [65] are open-set models and are applicable to a
wide range of categories. Although InternVideo [54] is trained
on fixed categories, it encompasses a majority of everyday
scenarios. In addition, we leverage multiple-level perceptual
models (object, scene, and temporal levels) allowing for a
comprehensive understanding of various aspects of the videos.
This multi-level perception ensures that even if InternVideo
does not recognize certain actions, complementary informa-
tion from other models can compensate, enhancing overall
performance. To evaluate the performance of FDVS on various
categories, we report the R@1 performance of our method on
different categories of videos from the ActivityNet dataset in
Figure 6. The category labels are obtained from the second-

TABLE XIV: Comparative analysis of zero-shot video retrieval
on MSRVTT dataset using a standalone video captioner and
the combination of image captioner and action recognizer.

Perception Models R@1 R@5 R@10
Video Captioner 29.2 52.4 63.9
Image Captioner

Action Recognizer 31.6 56.8 65.3
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TABLE XV: Ablation studies on ActivityNet Captions with
different vision foundation models (CLIP-base vs. CLIP-large)
and large language models. The default setting used in our
framework is in the grey column. We use CLIP-base and
Vicuna-7B as default models in our framework for their
efficiency.

Method R@1 R@5 R@10
Visual Encoder

CLIP-base 31.6 56.8 65.3
CLIP-large 33.3 56.6 65.9

LLM
Vicuna-7B 31.6 56.8 65.3
Vicuna-13B 34.3 59.6 71.8

ChatGPT 3.5 35.4 61.7 75.0

Fig. 6: R@1 performance of FDVS across various video
categories on the ActivityNet dataset

level action category annotations of the action detection set
of ActivityNet v1.3, ensuring that the category labels of the
videos are accurate. The results illustrate that our method
maintains balanced performance across these categories, with
no significant performance drop observed in any specific
category.
Effect of inference speed. Our proposed FDVS is designed
specifically for processing offline long videos, where the pri-
mary goal is to first extract hierarchical textual representations
from videos. These representations can then be directly utilized
for various downstream understanding tasks without the need
for additional fine-tuning on specific tasks or datasets.

To clarify the inference speed of our framework, we com-
pare the inference speed of FDVS with that of methods
which also use LLMs. We report the inference speed of
our method compared with existing models in Table XVI,
presented in terms of frames per second (FPS) during the
representation extraction and downstream task stages. A key
advantage of our approach lies in the efficiency gained in
the downstream task phase. Once the hierarchical textual
representations are extracted, they can be directly utilized
for various downstream tasks such as video retrieval, PRVR,
or question answering, without requiring any fine-tuning or
further processing. Our FDVS shows a significantly faster

TABLE XVI: Comparison of inference speeds (FPS) between
our method and other approaches during the Representation
Extraction (Rep. Extra.) phase and downstream tasks (Video
Retrieval, PRVR, and Video QA).

Methods Rep. Extra. Video Retrieval PRVR Video QA
VideoChat 30.29 116.46 66.88 26.95

VideoLlaVA 29.87 114.85 61.43 27.85
MovieChat 20.72 102.36 60.91 22.55

FDVS (Ours) 13.22 125.75 80.76 37.73

TABLE XVII: Ablation on the hierarchical textual represen-
tations in Video QA, i.e., the number of clip descriptions K
and video story. We conduct the evaluation in zero-shot video
question-answering with MSRVTT-QA and ActivityNet QA
and report the exact matching accuracy. The default settings
in our framework are in the grey row.

K Video Story Accuracy
MSRVTT-QA ActivityNet-QA

0 ↭ 13.0 20.1
1 ↭ 14.0 21.3
3 ↭ 14.5 21.2
5 ↭ 14.8 21.2

5 14.5 20.8
7 ↭ 14.8 21.0

inference speed for downstream tasks compared to existing
methods. The processing speed of our method is slower during
the initial representation extraction phase compared to existing
models. This is due to the complexity of converting the video
content into detailed and hierarchical textual representations,
which inherently involves multiple large models.
Effect of the hierarchical information used in video

question-answering. In video question-answering, we em-
ployed hierarchical textual representations, comprising clip
descriptions and video stories. The video story encapsulates
global information and the overall semantics of the video,
while the clip description contains more detailed information.
To assess the impact of hierarchical information in video
question-answering, we conduct experiments and present the
results in Table XVII. Here, K denotes the number of clip
descriptions used in video question-answering. When K = 0,
we exclusively rely on the video story to furnish reference
information for LLMs to answer the question. We observe
that incorporating hierarchical information results in higher
accuracy in video question-answering compared to relying
solely on the video story. This improvement stems from the
combined contributions of clip descriptions and the video
story, which provide more accurate and comprehensive ref-
erence information.
Ablation study of local memory length L. We remove textual
semantic redundancy based on the historical average of local
memory with length L. We conducted an ablation study on
the length of local memory, and the results are presented in
Table XVIII. Here, SumR denotes the sum of R@1, R@5, and
R@10 values. It’s noteworthy that a substantial performance
degradation occurs when the length L is too short, potentially
due to the instability of the reference content. The optimal
performance of our framework is achieved when L = 35, and
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we adopt this value as the default setting.
Ablation study on the number of frames sampled per

clip. We conduct ablation experiments regarding the sampling
number for video clips, with results reported in Table XIX.
The experiments indicate that a smaller sampling number
(e.g., 4) results in performance degradation while increasing
the sampling number to 8 yields improvements. However,
further increases to 16 or 32 frames show only marginal
performance gains. Thus, to balance computational load and
performance, we have adopted a default sampling number of
8. This is also consistent with previous research [27], [62] for
fair comparisons.
Discussion of advantages and potential limitations. Our
FDVS is specifically designed for processing offline long
videos. FDVS, which extracts long video content into hier-
archical textual representations, demonstrates the capability
to be directly utilized for various downstream tasks with-
out requiring any fine-tuning on task-specific datasets. This
characteristic enables our method to exhibit strong zero-shot
performance across multiple tasks, facilitating rapid adaptation
to new applications. Furthermore, as shown in Table XVI,
the inference speed for downstream tasks is notably high,
providing a significant advantage in applications. Additionally,
compared to traditional methods that extract deep features
for downstream tasks, our textual representations incur lower
storage overhead, as illustrated in Table X.

However, to achieve a comprehensive understanding of
long videos and to extract fine- grained hierarchical textual
representations, our approach utilizes perception models at
three levels: object, scene, and temporal. This multi-level
perception enables us to capture different aspects of video
content effectively. We also leverage large language models
(LLMs) for Bottom-up Video Interpretation and multi-granular
representations, which enhances our representation extraction
process. This makes our FDVS slower during the representa-
tion extraction phase than existing methods.
Discussion about optimization of FDVS. Our method is also
scalable, allowing for easy improvements to the entire pipeline.
For example, we can incorporate additional perception founda-
tion models to enhance video perception, including a speech
recognizer for audio perception. Additionally, since the use
of large language models (LLMs) can be computationally
intensive, optimizing the LLM’s key-value (KV) cache can
further improve computational efficiency.

TABLE XVIII: Ablation Study on the impact of local memory
length (L) in textual semantic redundancy elimination. This
analysis evaluates the effectiveness of varying local memory
lengths during video retrieval task using the ActivityNet Cap-
tions dataset. The default setting used in our framework is in
the grey row.

L R@1 R@5 R@10
1 4.36 7.17 8.47

11 27.1 51.1 68.0
21 27.2 53.7 68.7
31 27.3 56.2 69.4
35 28.4 57.5 71.1

41 27.3 56.8 69.3

TABLE XIX: The ablation study on the number of sampling
frames in each segmented video clip. The default setting used
in our framework is in the grey row.

Num. Frames R@1 R@5 R@10
4 26.9 47.4 56.6
8 31.6 56.8 65.3

16 31.7 57.4 66.0
32 32.1 58.6 67.1

V. CONCLUSION

In this paper, we introduce a comprehensive video under-
standing framework, referred to as Fine-Detailed Video Story
generation, that interprets videos as hierarchical textual repre-
sentations, encompassing clip chapters and long video stories.
To address the challenge of long-context video comprehension,
we propose a Bottom-up Video Interpretation Mechanism to
represent videos with detailed information at multiple gran-
ularities, evolving from clip chapters to long video stories.
To mitigate interference from inherent redundancy in videos,
we propose a semantic redundancy reduction scheme aimed
at eliminating redundancy at both the visual and textual
levels. Leveraging the detailed hierarchical representations,
our framework effortlessly adapts to various tasks without
requiring specific fine-tuning.

REFERENCES

[1] H. Li, M. Liu, Z. Hu, F. Nie, and Z. Yu, “Intermediary-guided bidi-
rectional spatial-temporal aggregation network for video-based visible-
infrared person re-identification,” IEEE Transactions on Circuits and

Systems for Video Technology, 2023.
[2] X. Sun, J. Gao, Y. Zhu, X. Wang, and X. Zhou, “Video moment re-

trieval via comprehensive relation-aware network,” IEEE Transactions

on Circuits and Systems for Video Technology, 2023.
[3] Y. Xu, X. Li, L. Pan, W. Sang, P. Wei, and L. Zhu, “Self-supervised

adversarial video summarizer with context latent sequence learning,”
IEEE Transactions on Circuits and Systems for Video Technology,
2023.

[4] J. Zhu, P. Zeng, L. Gao, G. Li, D. Liao, and J. Song, “Complementarity-
aware space learning for video-text retrieval,” IEEE Transactions on

Circuits and Systems for Video Technology, 2023.
[5] Z. Luo, Z. Durante, L. Li, W. Xie, R. Liu, E. Jin, Z. Huang, L. Y.

Li, J. Wu, J. C. Niebles et al., “Moma-lrg: Language-refined graphs
for multi-object multi-actor activity parsing,” Advances in Neural

Information Processing Systems, vol. 35, pp. 5282–5298, 2022.
[6] H. Xu, G. Ghosh, P.-Y. Huang, D. Okhonko, A. Aghajanyan, F. Metze,

L. Zettlemoyer, and C. Feichtenhofer, “Videoclip: Contrastive pre-
training for zero-shot video-text understanding,” in Proceedings of

Conference on Empirical Methods in Natural Language Processing,
2021, pp. 6787–6800.

[7] R. Zeng, W. Huang, M. Tan, Y. Rong, P. Zhao, J. Huang, and
C. Gan, “Graph convolutional module for temporal action localization
in videos,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 44, no. 10, pp. 6209–6223, 2022.
[8] S. Liu, A. Li, Y. Zhao, J. Wang, and Y. Wang, “Evcap: Element-

aware video captioning,” IEEE Transactions on Circuits and Systems

for Video Technology, 2024.
[9] Y. Wang, M. Liu, J. Wu, and L. Nie, “Multi-granularity interaction and

integration network for video question answering,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 33, no. 12, pp.
7684–7695, 2023.

[10] J. Liu, G. Wang, J. Xie, F. Zhou, and H. Xu, “Video question answering
with semantic disentanglement and reasoning,” IEEE Transactions on

Circuits and Systems for Video Technology, 2023.
[11] L. Chen, Z. Deng, L. Liu, and S. Yin, “Multilevel semantic interaction

alignment for video–text cross-modal retrieval,” IEEE Transactions on

Circuits and Systems for Video Technology, 2024.



[12] K. Li, Y. He, Y. Wang, Y. Li, W. Wang, P. Luo, Y. Wang, L. Wang, and
Y. Qiao, “Videochat: Chat-centric video understanding,” arXiv preprint

arXiv:2305.06355, 2023.
[13] H. Zhang, X. Li, and L. Bing, “Video-llama: An instruction-tuned

audio-visual language model for video understanding,” in Proceedings

of Conference on Empirical Methods in Natural Language Processing,
2023, pp. 543–553.

[14] E. Song, W. Chai, G. Wang, Y. Zhang, H. Zhou, F. Wu, X. Guo,
T. Ye, Y. Lu, J.-N. Hwang et al., “Moviechat: From dense token
to sparse memory for long video understanding,” arXiv preprint

arXiv:2307.16449, 2023.
[15] M. Maaz, H. Rasheed, S. Khan, and F. S. Khan, “Video-chatgpt:

Towards detailed video understanding via large vision and language
models,” arXiv preprint arXiv:2306.05424, 2023.

[16] Z. Wang, M. Li, R. Xu, L. Zhou, J. Lei, X. Lin, S. Wang, Z. Yang,
C. Zhu, D. Hoiem, S. Chang, M. Bansal, and H. Ji, “Language models
with image descriptors are strong few-shot video-language learners,”
in Advances in Neural Information Processing Systems, 2022.

[17] Y. Mou, X. Jiang, K. Xu, T. Sun, and Z. Wang, “Compressed video
action recognition with dual-stream and dual-modal transformer,” IEEE

Transactions on Circuits and Systems for Video Technology, 2023.
[18] Z. Zheng, L. Yang, Y. Wang, M. Zhang, L. He, G. Huang, and

F. Li, “Dynamic spatial focus for efficient compressed video action
recognition,” IEEE Transactions on Circuits and Systems for Video

Technology, 2023.
[19] Y. Zhao, Z. Li, X. Guo, and Y. Lu, “Alignment-guided temporal atten-

tion for video action recognition,” in Advances in Neural Information

Processing Systems, 2022.
[20] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks

for video recognition,” in IEEE International Conference on Computer

Vision, 2019, pp. 6201–6210.
[21] J. Weng, D. Luo, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang, X. Jiang,

and J. Yuan, “Temporal distinct representation learning for action
recognition,” in European Conference on Computer Vision. Springer,
2020, pp. 363–378.

[22] Z. Wang, J. Weng, C. Yuan, and J. Wang, “Truncate-split-contrast: a
framework for learning from mislabeled videos,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 37, no. 3, 2023, pp.
2751–2758.

[23] J. Dong, Y. Wang, X. Chen, X. Qu, X. Li, Y. He, and X. Wang,
“Reading-strategy inspired visual representation learning for text-to-
video retrieval,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 32, no. 8, pp. 5680–5694, 2022.
[24] Y. Liu, S. Albanie, A. Nagrani, and A. Zisserman, “Use what you

have: Video retrieval using representations from collaborative experts,”
in British Machine Vision Conference, 2019, p. 279.

[25] J. Dong, X. Li, C. Xu, S. Ji, Y. He, G. Yang, and X. Wang, “Dual
encoding for zero-example video retrieval,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 9346–9355.
[26] M. Cao, T. Yang, J. Weng, C. Zhang, J. Wang, and Y. Zou, “Locvtp:

Video-text pre-training for temporal localization,” in European Confer-

ence on Computer Vision. Springer, 2022, pp. 38–56.
[27] R. Zeng, C. Gan, P. Chen, W. Huang, Q. Wu, and M. Tan, “Breaking

winner-takes-all: Iterative-winners-out networks for weakly supervised
temporal action localization,” IEEE Transactions on Image Processing,
vol. 28, no. 12, pp. 5797–5808, 2019.

[28] J. Yang, P. Wei, and N. Zheng, “Cross time-frequency transformer
for temporal action localization,” IEEE Transactions on Circuits and

Systems for Video Technology, 2023.
[29] W. Sun, R. Su, Q. Yu, and D. Xu, “Slow motion matters: A slow motion

enhanced network for weakly supervised temporal action localization,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 33, no. 1, pp. 354–366, 2022.

[30] Y. Sun, H. Xue, R. Song, B. Liu, H. Yang, and J. Fu, “Long-form video-
language pre-training with multimodal temporal contrastive learning,”
Advances in Neural Information Processing Systems, vol. 35, pp.
38 032–38 045, 2022.

[31] N. Hussein, E. Gavves, and A. W. Smeulders, “Videograph: Rec-
ognizing minutes-long human activities in videos,” arXiv preprint

arXiv:1905.05143, 2019.
[32] Y. Wang, G. Bertasius, T.-H. Oh, A. Gupta, M. Hoai, and L. Torre-

sani, “Supervoxel attention graphs for long-range video modeling,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2021, pp. 155–166.
[33] M. M. Islam and G. Bertasius, “Long movie clip classification with

state-space video models,” in European Conference on Computer

Vision. Springer, 2022, pp. 87–104.

[34] E. Nguyen, K. Goel, A. Gu, G. Downs, P. Shah, T. Dao, S. Baccus,
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