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Background

Deep neural networks have been producing state-of-the-art results in many challenging tasks, 
such as image classification, object detection, semantic segmentation andetc.

Image Classification Object Detection

Figure: Applications of deep neural networks.
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Semantic Segmentation



CNAS ICML 2020

Neural Architecture Design

n Neural architecture design is one of the key factors behind the success of deep 

neural networks.

n Existing architectures can be divided into two categories:

1. Manually designed architectures
2. Automatically searched architectures by Neural Architecture Search (NAS)

n Empirical studies show that the automatically searched architectures often 

outperform the manually designed ones.
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Search Space Size Analysis
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Given B nodes and K candidate operations in a cell-based architecture,  
the size of the search space Ω can be computed by

• ENAS has a search space size of 5×10%& with B=8 and K=5
• DARTS has a search space size of 2×10%% with B=7 and K=8.

Space Explosion Issue

The search space in NAS is often extremely large.
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Search Space Size Analysis
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n As the number of nodes/operations increases, the size of the search space will increase.

n Increasing nodes make the size of search space grow faster than increasing operations.

Figure: Comparisons of the search spaces size of different number of operations/nodes.
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Motivation
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To alleviate the space explosion issue, we seek to enlarge the search space gradually to improve 
the search performance by curriculum learning.

Figure: Comparisons of the search process between standard NAS 
methods and our proposed curriculum NAS method..
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Preliminary

Reinforcement Learning (RL) based NAS methods seek to learn a  controller to produce 

candidate architectures.
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n is the parameter of the controller. 

n is the search space.

n is some metric to measure the performance of architecture     .

n is the loss function on training data.
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Curriculum Neural Architecture Search
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We propose a novel Curriculum Neural Architecture Search (CNAS) to enlarge the search space 
by gradually increasing the number of candidate operations from 1 to K .

Figure: An overview of the search space used by CNAS.
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NAS with Curriculum Search
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• The training process can be divided into K stages corresponding to K candidate operations. 
• The training objective in i-th stage can be written as

n is the search space of the i-th stage. 

n denotes the  learned policy w.r.t. . 

n evaluates the entropy of the policy.

n controls the strength of the entropy regularization term.
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Operation Warmup
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n We fix the controller model and only train the parameters of the super network.

n We uniformly sample candidate architectures to train each operation with equal probability.

Operation Unfairness

The architectures with the new operation have very poor  performance.

We propose an operation warmup method.

The architectures with the newly added operation achieve comparable performance 

with the architectures without this operation.
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Training Method
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Demonstration of CNAS
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Figure: Performance comparisons of the architectures obtained by different methods during the search process.

n Fixed-NAS: For each stage, we keep the search space fixed and train a controller from scratch. 

n CNAS: We train the controller in a growing search space by gradually adding new operations.

n CNAS-Node: We train the controller in a growing search space by gradually adding new nodes.



CNAS ICML 2020

Evaluation on CIFAR-10

CNAS yields significantly better performance than the baseline architectures on CIFAR-10.
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Evaluation on CIFAR-10

CNAS finds better architectures than existing methods on ImageNet.
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Conclusion

n We propose a novel Curriculum Neural Architecture Search (CNAS) method to alleviate 

the training difficulties of the NAS problem incurred by the extremely large search space.

n We propose a curriculum search method that gradually incorporates the knowledge 

learned from a small search space.

n Extensive experiments show the superiority of CNAS over the hand-crafted and NAS 

based architectures.
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