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Background: Deep Learning Pipeline and Data Shifts

6
[1] Deep Learning on Private Data.

An overview of training and Inference in DL [1]

Distribution shift often exists 
between training and testing data!



Background: Data Shifts
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p Test samples may encounter natural variations or corruptions (also called 

distribution shifts), such as:

l Changes in lighting resulting from weather change

l Unexpected noises resulting from sensor degradation, etc.

Unfortunately, models are very sensitive to such shifts, and 
suffer from severe performance degradation!

ImageNet-C (Hendrycks & Dietterich, 2019)



Methods for Overcoming Data Shifts
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p Training-time generalization seek to anticipate shifts at training phase:

l Domain generalization

l Data augmentation techniques

Setting Source data Target data Training loss Testing loss Offline Online
Fine-tuning × x! , 𝑦! ℒ(x! , 𝑦!) -- √ ×

UDA x", 𝑦" x! ℒ x", 𝑦" + ℒ(x", x!) -- √ ×

Test-time training x", 𝑦" x! ℒ x", 𝑦" + ℒ(x") ℒ(x!) × √
Fully TTA × x! × ℒ(x!) × √

It is hard to anticipate 
all possible shifts!

p Test-time adaptation methods (will exploit testing data):

p In this work, we study the Fully test-time adaptation (TTA) setting

l Does not alter model training process, adapt online, use only 𝐱𝒕



Limitations of Prior Test-Time Adaptation Methods
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p Efficiency: perform adaptation for all samples is expensive

On ImageNet-C, Gauss. Level 5 # Forward # Backward
Standard Inference 50,000 0
TTT (Sun et al.,  2020) 50,000 × 65 50,000 × 64
Tent (Wang et al., 2021) 50,000 50,000
EATA (ours) 50,000 <20,000

p Forgetting: performance degradation on in-distribution test data after 
adaptation on out-of-distribution test data
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EATA: Efficient Anti-forgetting Test-time Adaptation
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p Selective adaptation 𝑺(𝐱) to improve efficiency:

l Active sample selection

p Weight regularization 𝓡(⋅) to prevent forgetting:

l Fisher regularizer



Active Sample Selection
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p Samples for adaptation should be reliable:

l Adaptation on low-entropy samples makes more contribution than high-

entropy ones

l Adaptation on test samples with very high entropy may hurt performance
Effect of different samples in test-time 

entropy minimization (Tent)

𝐸(𝐱; Θ) is the entropy of sample x and 𝐸#
is a threshold



Active Sample Selection
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p Samples for adaptation should be non-redundant:
l Adaptation with samples that produce similar gradients are unnecessary

l Ensure the remaining samples have diverse model outputs/gradients

Moving average of previous samples' outputs

p In sum, 



Anti-forgetting Weight Regularization
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p Ensure (OOD) adapted model works well on ID and OOD data simultaneously

l Prevent important parameters (for ID domain) from changing too much

l 𝜃$% is the original parameter

l 0Θ denote affine parameters of BN layers

l 𝜔(𝜃1) measures weight importance (using Fisher) through a small set of ID 

pseudo-labeled test samples 𝒟2
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Comparison w.r.t. OOD Performance and Efficiency
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Results on ImageNet-C with severity level 5 regarding Corruption Error (%)

① Consistently outperform considered methods w.r.t. error

② Outperform Tent but with less #Backwards, leading to higher efficiency

③ Show the potential of fully test-time adaptation (consistently better than TTT)



Demonstration of Preventing Forgetting
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Results on ImageNet-C level 5. Left: the model parameters are reset after each corruption type. Right: parameters will never be reset.

① EATA consistently outperforms Tent regarding the OOD accuracy and 

maintains the clean accuracy (while Tent fails)

② The forgetting issue of Tent is much more severe in lifelong scenario
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Conclusion
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p Contributions:

l Propose an active sample identification scheme to filter out non-reliable and

redundant test data from model adaptation

l Extend the label-dependent Fisher regularizer to test samples with pseudo

label generation, preventing drastic changes in important model weights

l Demonstrate that EATA improves the efficiency of TTA and also alleviates the

long-neglected catastrophic forgetting issue

p Future directions:

l TTA on single test sample, various model architectures, etc.



Thank you for your attention!


